#materials science

LIVE
 Researchers present new strategy for extending ductility in a single-phase alloySimultaneous high s

Researchers present new strategy for extending ductility in a single-phase alloy

Simultaneous high strength and large ductility are always desirable for metallic materials. However, while the strength of metals and alloys can be easily increased by five to 15 times through simple plastic deformation or grain refinement down to the nano-scale, the gain in strength is usually accompanied by a drastic loss of uniform ductility. Ductility depends strongly on the work hardening ability, which becomes weak in materials with high strength, especially in a single-phase material.

Publishing online in PNAS, the research group of Prof. WU Xiaolei at the Chinese Academy of Sciences, in collaboration with Prof. En Ma at Johns Hopkins University, U.S., have demonstrated a strategy for exploiting a dynamically reinforced multilevel heterogeneous grain structure (HGS). They demonstrated the behavior of such an HGS using the face-centered-cubic CrCoNi medium-entropy alloy (MEA) as a model system.

Back stress hardening is usually not obvious in single-phase homogeneous grains. To overcome this, the scientists purposely created an unusually heterogeneous grain structure. They took advantage of the low stacking fault energy of the MEA, which facilitates the generation of twinned nano-grains and stacking faults during tensile straining, dynamically reinforcing the heterogeneity on the fly.

Read more.


Post link
 Recreating the chameleon: Material mimics color changes of living organismsResearchers at Nagoya Un

Recreating the chameleon: Material mimics color changes of living organisms

Researchers at Nagoya University develop a composite material that, by adjusting its composition and exposing it to different types of light, can mimic animals’ changes in color.

Nagoya, Japan – A range of creatures, including chameleons, octopuses, and frogs, can change color in response to changes in the environment. Some insights into the mechanisms behind this at the anatomical, cellular, and molecular levels have been obtained. However, much work is still required to obtain sufficient understanding of this phenomenon and to translate it into useful artificial applications.

As reported in the journal Small, researchers at Nagoya University’s Department of Molecular Design and Engineering developed a material containing dyes and crystals that can change the colors and patterns it displays depending on the background color used within it and its exposure to visible or ultraviolet light.

The team was inspired to develop this material by findings obtained in the skin of certain frogs, in which different layers of cells with different properties combine to enable remarkable color changes.

Read more.


Post link
 Fine-tuning chemistry by doping with transition metals produced stability in bismuth oxideANSTO has

Fine-tuning chemistry by doping with transition metals produced stability in bismuth oxide

ANSTO has contributed to research led by the University of Sydney, involving doping transition metals in a polymorph of bismuth oxide in a search for more structural stability.

Cubic high-temperature polymorph of bismuth oxide, δ-Bi2O3, is the best known oxide ionic conductor but its narrow stability range (729—817 °C), which is close to its melting temperature of 817 °C precludes its practical use.

A large collaboration, led by Professor Chris Ling and Dr. Julia Wind (as part of her Ph.D.) from the University of Sydney involving researchers from ANSTO and two other universities, has achieved the design and understanding of the complex crystal structure and chemistry behind a commensurate structure within the fast-ion conducting stabilised bismuth oxide, co-doped with chromium and niobium, Bi23CrNb3O45.

The study was published in the Chemistry of Materials.

Read more.


Post link

materialsworld:

Heated magnetic nanoparticles may be the future of eradicating cancer cells without harming healthy tissue, according to research from the University of Buffalo, USA. The nanoparticles strike tumours with significant heat under a low magnetic field.

Hao Zeng, Professor of Physics at Buffalo, said, ‘The main accomplishment of our work is the greatly enhanced heating performance of nanoparticles under low-field conditions suitable for clinical applications. The best heating power we obtained is close to the theoretical limit, greatly surpassing some of the best performing particles that other research teams have produced.’

Targeting technologies would first direct nanoparticles to tumours within the patient’s body. Exposure to an alternating magnetic field would prompt the particles’ magnetic orientation to flip back and forth hundreds of thousands of times a second, causing them to warm up as they absorb energy from the electromagnetic field and convert it to thermal energy.

Two particles have been tested – manganese-cobalt-ferrite and zinc ferrite. While the manganese particle reached maximum heating power under high magnetic fields, the biocompatible zinc ferrite was efficieny under an ultra-low field.

While this form of treatment, known as magnetic nanoparticle hyperthermia, is not new, the Buffalo-designed particles are able to generate heat several times faster than the current standard.

 Superstrong Al alloys may change manufacturing processes for automobiles, aerospace devicesPurdue U

Superstrong Al alloys may change manufacturing processes for automobiles, aerospace devices

Purdue University researchers have developed a superstrong material that may change some manufacturing processes for the aerospace and automobile industries.

The Purdue team, led by Xinghang Zhang, a professor in Purdue’s School of Materials Engineering, created high-strength aluminum alloy coatings. According to Zhang, there is an increasing demand for such materials because of their advantages for automakers and aerospace industries.

“We have created a very durable and lightweight aluminum alloy that is just as strong as, and possibly stronger than, stainless steel,” Zhang said. “Our aluminum alloy is lightweight and provides flexibility that stainless steel does not in many applications.”

Another member of the Purdue team, Yifan Zhang, a graduate student in materials engineering, said the aluminum alloy they created could be used for making wear- and corrosion-resistant automobile parts such as engines and coatings for optical lenses for specialized telescopes in the aerospace industry.

Read more.


Post link
 Sintering atomically thin materials with ceramics now possibleFor the first time, researchers have

Sintering atomically thin materials with ceramics now possible

For the first time, researchers have created a nanocomposite of ceramics and a two-dimensional material, opening the door for new designs of nanocomposites with such applications as solid-state batteries, thermoelectrics, varistors, catalysts, chemical sensors and much more.

Sintering uses high heat to compact powder materials into a solid form. Widely used in industry, ceramic powders are typically compacted at temperatures of 1472 degrees Fahrenheit or higher. Many low-dimensional materials cannot survive at those temperatures.

But a sintering process developed by a team of researchers at Penn State, called the cold sintering process (CSP), can sinter ceramics at much lower temperatures, less than 572 degrees F, saving energy and enabling a new form of material with high commercial potential.

“We have industry people who are already very interested in this work,” said Jing Guo, a post-doctoral scholar working in the group of Clive Randall, professor of materials science and engineering, Penn State. “They are interested in developing some new material applications with this system and, in general, using CSP to sinter nanocomposites.” Guo is first coauthor on the paper appearing online in Advanced Materials.

Read more.


Post link
 Thermal camouflage disguises hot and coldHunters don camouflage clothing to blend in with their sur

Thermal camouflage disguises hot and cold

Hunters don camouflage clothing to blend in with their surroundings. But thermal camouflage – or the appearance of being the same temperature as one’s environment – is much more difficult. Now researchers, reporting in ACS’ journal Nano Letters, have developed a system that can reconfigure its thermal appearance to blend in with varying temperatures in a matter of seconds.

Most state-of-the-art night-vision devices are based on thermal imaging. Thermal cameras detect infrared radiation emitted by an object, which increases with the object’s temperature. When viewed through a night-vision device, humans and other warm-blooded animals stand out against the cooler background. Previously, scientists have tried to develop thermal camouflage for various applications, but they have encountered problems such as slow response speed, lack of adaptability to different temperatures and the requirement for rigid materials. Coskun Kocabas and coworkers wanted to develop a fast, rapidly adaptable and flexible material.

Read more.


Post link
 New insights bolster Einstein’s idea about how heat moves through solidsA discovery by scient

New insights bolster Einstein’s idea about how heat moves through solids

A discovery by scientists at the Department of Energy’s Oak Ridge National Laboratory supports a century-old theory by Albert Einstein that explains how heat moves through everything from travel mugs to engine parts.

The transfer of heat is fundamental to all materials. This new research, published in the journal Science, explored thermal insulators, which are materials that block transmission of heat.

“We saw evidence for what Einstein first proposed in 1911—that heat energy hops randomly from atom to atom in thermal insulators,” said Lucas Lindsay, materials theorist at ORNL. “The hopping is in addition to the normal heat flow through the collective vibration of atoms.”

The random energy hopping is not noticeable in materials that conduct heat well, like copper on the bottom of saucepans during cooking, but may be detectable in solids that are less able to transmit heat.

Read more.


Post link
 Simple logic for nanofluidic computing simulatedInvigorating the idea of computers based on fluids

Simple logic for nanofluidic computing simulated

Invigorating the idea of computers based on fluids instead of silicon, researchers at the National Institute of Standards and Technology (NIST) have shown how computational logic operations could be performed in a liquid medium by simulating the trapping of ions (charged atoms) in graphene (a sheet of carbon atoms) floating in saline solution. The scheme might also be used in applications such as water filtration, energy storage or sensor technology.

The idea of using a liquid medium for computing has been around for decades, and various approaches have been proposed. Among its potential advantages, this approach would require very little material and its soft components could conform to custom shapes in, for example, the human body.

NIST’s ion-based transistor and logic operations are simpler in concept than earlier proposals. The new simulations show that a special film immersed in liquid can act like a solid silicon-based semiconductor. For example, the material can act like a transistor, the switch that carries out digital logic operations in a computer. The film can be switched on and off by tuning voltage levels like those induced by salt concentrations in biological systems.

Read more.


Post link
 Oxide sintering by air pressure controlProfessor Hiromi Nakano of the Toyohashi University of Techn

Oxide sintering by air pressure control

Professor Hiromi Nakano of the Toyohashi University of Technology has collaborated with a company to develop a small, lightweight air-pressure control atmosphere furnace that can rapidly and uniformly synthesize periodical structures of Li2O-Nb2O5-TiO2 (LNT) solid solution materials at 3x ordinary pressure. The underlying mechanism was discovered using detailed composition/structure analysis. As the sintering process is reduced by one-fourth compared to conventional electric furnaces, this technology can also be applied to other materials.

The air-pressure control atmosphere furnace is a sintering furnace that uses a regular 100 V AC power outlet and saves up to 800 W of energy. With this furnace, pressurized gas is supplied/controlled using a compressor or gas flow and materials can be heated up to 1,100 degrees C. (FIG. 1)

Read more.


Post link
cncenginedynamics: In my endless quest for the perfectly machined paper weight I came up with this.

cncenginedynamics:

In my endless quest for the perfectly machined paper weight I came up with this. From one solid piece of T6 6061 billet aluminum. These are not seperate cubes put inside one another,it was all machined as a whole,the inner cubes do not come out.


Post link
Alloys: 6061 AluminumAmong the most popular aluminum alloys, 6061 aluminum is an alloy in the 6000 sAlloys: 6061 AluminumAmong the most popular aluminum alloys, 6061 aluminum is an alloy in the 6000 sAlloys: 6061 AluminumAmong the most popular aluminum alloys, 6061 aluminum is an alloy in the 6000 sAlloys: 6061 AluminumAmong the most popular aluminum alloys, 6061 aluminum is an alloy in the 6000 s

Alloys: 6061 Aluminum

Among the most popular aluminum alloys, 6061 aluminum is an alloy in the 6000 series of aluminum alloys: those heat treatable alloys where the principle alloying elements are magnesium and silicon. Because it is so popular, 6061 aluminum is also one of the least expensive of the aluminum alloys.

Highly resistant to corrosion, this alloy can be tempered a variety of different ways to achieve the desirable properties. Different tempers can alter the workability, weldability, and strength. T6 is one of the most common tempers (solution heat treated and artificially aged), but other tempers include O (annealed), T1 (cooled from elevated temperature shaping process and naturally aged), and T4 (solution heat-treated and naturally aged).

6061 aluminum is composed of over 95% aluminum with small or trace amounts of silicon, iron, copper, manganese, magnesium, chromium, zinc, and titanium added in. Magnesium is the largest alloying element, at up to 1.2% maximum, followed by silicon at 0.80% maximum. It is very often extruded but is also suitable for hot forging. 

While not as high strength as some of the other aluminum alloys, 6061 is still highly versatile and used in a wide variety of applications: railway car components; boat or aircraft structures; other structural components such as bridges; pipes; wheels; cans; and SCUBA tanks.

Sources/Further Reading: (1) ( 2 - image 2 ) (3) (4) (5)

Image sources: (1) (3) (4)


Post link
 Let it rain! New coatings make natural fabrics waterproofFabrics that resist water are essential fo

Let it rain! New coatings make natural fabrics waterproof

Fabrics that resist water are essential for everything from rainwear to military tents, but conventional water-repellent coatings have been shown to persist in the environment and accumulate in our bodies, and so are likely to be phased out for safety reasons. That leaves a big gap to be filled if researchers can find safe substitutes.

Now, a team at MIT has come up with a promising solution: a coating that not only adds water-repellency to natural fabrics such as cotton and silk, but is also more effective than the existing coatings. The new findings are described in the journal Advanced Functional Materials, in a paper by MIT professors Kripa Varanasi and Karen Gleason, former MIT postdoc Dan Soto, and two others.

“The challenge has been driven by the environmental regulators” because of the phaseout of the existing waterproofing chemicals, Varanasi explains. But it turns out his team’s alternative actually outperforms the conventional materials.

“Most fabrics that say ‘water-repellent’ are actually water-resistant,” says Varanasi, who is an associate professor of mechanical engineering. “If you’re standing out in the rain, eventually water will get through.” Ultimately, “the goal is to be repellent—to have the drops just bounce back.” The new coating comes closer to that goal, he says.

Read more.


Post link
 Closing the gap: On the road to terahertz electronicsAsymmetric plasmonic antennas deliver femtosec

Closing the gap: On the road to terahertz electronics

Asymmetric plasmonic antennas deliver femtosecond pulses for fast optoelectronics

A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner.

Classical electronics allows frequencies up to around 100 gigahertz. Optoelectronics uses electromagnetic phenomena starting at 10 terahertz. This range in between is referred to as the terahertz gap, since components for signal generation, conversion and detection have been extremely difficult to implement.

The TUM physicists Alexander Holleitner and Reinhard Kienberger succeeded in generating electric pulses in the frequency range up to 10 terahertz using tiny, so-called plasmonic antennas and run them over a chip. Researchers call antennas plasmonic if, because of their shape, they amplify the light intensity at the metal surfaces.

Read more.


Post link
 Electrospun sodium titanate speeds up the purification of nuclear waste waterElectrospun sodium tit

Electrospun sodium titanate speeds up the purification of nuclear waste water

Electrospun sodium titanate speeds up the purification of water based on selective ion exchange – effectively extracts radio-active strontium

With the help of this new method, waste water can be treated faster than before, and the environmentally positive aspect is that the process leaves less solid radio-active waste.

The properties of electrospun sodium titanate are equal to those of commercially produced ion-exchange materials.

“The advantages of electrospun materials are due to the kinetics, i.e. reaction speed, of ion exchange,” says Risto Koivula, a scientist in the research group Ion Exchange for Nuclear Waste Treatment and for Recycling at the Department of Chemistry at the University of Helsinki.

Read more.


Post link
 Australian shrub contains new class of organic compoundThe botanical world can be an exciting place

Australian shrub contains new class of organic compound

The botanical world can be an exciting place for chemists. Plant species produce a beautiful array of organic molecules with complex structures, often of great practical use. Indeed, this is a realm where new discoveries are still being made. Recently, a Japanese-led research team discovered an entirely new structural class in compounds from a jungle-dwelling shrub.

The glossy or red-fruited laurel (binomial name: Cryptocarya laevigata) inhabits the rainforests of eastern Australia. Little was known about the chemical makeup of this tall shrub until the team, led by Kanazawa University, analyzed an extract of its twigs and leaves. The plant’s essential oil was found to contain a family of six new compounds, the structural analysis of which revealed some surprises.

As reported in Organic Letters, NMR experiments showed that at the center of the compounds lay a peculiar, nine-membered carbon cycle known as a spiro-nonene. This structure consists of two rings of carbon atoms—one containing six atoms, the other four—linked by a single “pinch point” atom that is a part of both rings. This motif had never been seen before in any natural product.

Read more.


Post link
 The culprit of some GaN defects could be nitrogenAs silicon-based semiconductors reach their perfor

The culprit of some GaN defects could be nitrogen

As silicon-based semiconductors reach their performance limits, gallium nitride (GaN) is becoming the next go-to material to advance light-emitting diode (LED) technologies, high-frequency transistors and photovoltaic devices. Holding GaN back, however, is its high numbers of defects.

This material degradation is due to dislocations—when atoms become displaced in the crystal lattice structure. When multiple dislocations simultaneously move from shear force, bonds along the lattice planes stretch and eventually break. As the atoms rearrange themselves to reform their bonds, some planes stay intact while others become permanently deformed, with only half planes in place. If the shear force is great enough, the dislocation will end up along the edge of the material.

Layering GaN on substrates of different materials makes the problem that much worse because the lattice structures typically don’t align. This is why expanding our understanding of how GaN defects form at the atomic level could improve the performance of the devices made using this material.

A team of researchers has taken a significant step toward this goal by examining and determining six core configurations of the GaN lattice. They presented their findings in the Journal of Applied Physics.

Read more.


Post link
 This bacterium gets paid in goldHarvesting solar fuels through a bacterium’s unusual appetite

This bacterium gets paid in gold

Harvesting solar fuels through a bacterium’s unusual appetite for gold

A bacterium named Moorella thermoacetica won’t work for free. But UC Berkeley researchers have figured out it has an appetite for gold. And in exchange for this special treat, the bacterium has revealed a more efficient path to producing solar fuels through artificial photosynthesis.

M. thermoacetica first made its debut as the first non-photosensitive bacterium to carry out artificial photosynthesis in a study led by Peidong Yang, a professor in UC Berkeley’s College of Chemistry. By attaching light-absorbing nanoparticles made of cadmium sulfide (CdS) to the bacterial membrane exterior, the researchers turned M. thermoacetica into a tiny photosynthesis machine, converting sunlight and carbon dioxide into useful chemicals.

Now Yang and his team of researchers have found a better way to entice this CO2-hungry bacterium into being even more productive. By placing light-absorbing gold nanoclusters inside the bacterium, they have created a biohybrid system that produces a higher yield of chemical products than previously demonstrated. The research, funded by the National Institutes of Health, was published on Oct. 1 in Nature Nanotechnology.

Read more.


Post link
 Saturn’s largest moon may hold key to cleaner enginesA new discovery on Titan’s haze is

Saturn’s largest moon may hold key to cleaner engines

A new discovery on Titan’s haze is revealing new information about burning fuels on Earth.

Florida International University chemist Alexander Mebel and a team of international researchers have been studying Saturn’s largest moon, trying to unlock a mystery brewing beneath Titan’s thick, hazy atmosphere—How is it that dunes of hydrocarbons exist on the moon’s frozen surface?

On Earth, the kinds of hydrocarbons that cause soot are only known to occur during the combustion process under very high temperatures. They are the kinds of byproducts that engineers usually try to eliminate when engines burn fuel.

By examining data from NASA’s Cassini-Huygens probe, the researchers determined hydrocarbons can form the type of complex chains that create Titan’s orange-brown haze layers at temperatures as low as 90 degrees Kelvin, which is about -298 degrees Fahrenheit—that’s nearly 330 degrees below freezing on Earth.

Read more.


Post link
 Approach paves way for new generation of antimicrobial materialsResearchers at North Carolina State

Approach paves way for new generation of antimicrobial materials

Researchers at North Carolina State University have successfully incorporated “photosensitizers” into a range of polymers, giving those materials the ability to render bacteria and viruses inactive using only ambient oxygen and visible-wavelength light. The new approach opens the door to a range of new products aimed at reducing the transmission of drug-resistant pathogens.

“The transmission of antibiotic-resistant pathogens, including so-called ‘superbugs,’ poses a significant threat to public health, with millions of medical cases occurring each year in the United States alone,” says Reza Ghiladi, associate professor of chemistry at NC State and co-corresponding author of a paper on the work. “Many of these infections are caused by surface-transmitted pathogens.

"Our goal with this work was to develop materials that are self-sterilizing, nontoxic and resilient enough for practical use. And we’ve been successful.”

“A lot of work has been done to develop photosensitizer molecules that use the energy from visible light to convert oxygen in the air into biocidal 'singlet’ oxygen, which effectively punches holes in viruses and bacteria,” says Richard Spontak, distinguished professor of chemical and biomolecular engineering, professor of materials science and engineering at NC State and co-corresponding author of the paper. “There is no resistance to this mode of action.

Read more.


Post link
loading