#beta amyloid

LIVE

Scientists identify the cause of Alzheimer’s progression in the brain

For the first time, researchers have used human data to quantify the speed of different processes that lead to Alzheimer’s disease and found that it develops in a very different way than previously thought. Their results could have important implications for the development of potential treatments.

The international team, led by the University of Cambridge, found that instead of starting from a single point in the brain and initiating a chain reaction which leads to the death of brain cells, Alzheimer’s disease reaches different regions of the brain early. How quickly the disease kills cells in these regions, through the production of toxic protein clusters, limits how quickly the disease progresses overall.

The researchers used post-mortem brain samples from Alzheimer’s patients, as well as PET scans from living patients, who ranged from those with mild cognitive impairment to those with late-stage Alzheimer’s disease, to track the aggregation of tau, one of two key proteins implicated in the condition.

In Alzheimer’s disease, tau and another protein called amyloid-beta build up into tangles and plaques – known collectively as aggregates – causing brain cells to die and the brain to shrink. This results in memory loss, personality changes and difficulty carrying out daily functions.

By combining five different datasets and applying them to the same mathematical model, the researchers observed that the mechanism controlling the rate of progression in Alzheimer’s disease is the replication of aggregates in individual regions of the brain, and not the spread of aggregates from one region to another.

The results, reported in the journal Science Advances, open up new ways of understanding the progress of Alzheimer’s and other neurodegenerative diseases, and new ways that future treatments might be developed.

For many years, the processes within the brain which result in Alzheimer’s disease have been described using terms like ‘cascade’ and ‘chain reaction’. It is a difficult disease to study, since it develops over decades, and a definitive diagnosis can only be given after examining samples of brain tissue after death.

For years, researchers have relied largely on animal models to study the disease. Results from mice suggested that Alzheimer’s disease spreads quickly, as the toxic protein clusters colonise different parts of the brain.

“The thinking had been that Alzheimer’s develops in a way that’s similar to many cancers: the aggregates form in one region and then spread through the brain,” said Dr Georg Meisl from Cambridge’s Yusuf Hamied Department of Chemistry, the paper’s first author. “But instead, we found that when Alzheimer’s starts there are already aggregates in multiple regions of the brain, and so trying to stop the spread between regions will do little to slow the disease.”

This is the first time that human data has been used to track which processes control the development of Alzheimer’s disease over time. It was made possible in part by the chemical kinetics approach developed at Cambridge over the last decade which allows the processes of aggregation and spread in the brain to be modelled, as well as advances in PET scanning and improvements in the sensitivity of other brain measurements.

“This research shows the value of working with human data instead of imperfect animal models,” said co-senior author Professor Tuomas Knowles, also from the Department of Chemistry. “It’s exciting to see the progress in this field – fifteen years ago, the basic molecular mechanisms were determined for simple systems in a test tube by us and others; but now we’re able to study this process at the molecular level in real patients, which is an important step to one day developing treatments.”

The researchers found that the replication of tau aggregates is surprisingly slow – taking up to five years. “Neurons are surprisingly good at stopping aggregates from forming, but we need to find ways to make them even better if we’re going to develop an effective treatment,” said co-senior author Professor Sir David Klenerman, from the UK Dementia Research Institute at the University of Cambridge. “It’s fascinating how biology has evolved to stop the aggregation of proteins.”

The researchers say their methodology could be used to help the development of treatments for Alzheimer’s disease, which affects an estimated 44 million people worldwide, by targeting the most important processes that occur when humans develop the disease. In addition, the methodology could be applied to other neurodegenerative diseases, such as Parkinson’s disease.  

“The key discovery is that stopping the replication of aggregates rather than their propagation is going to be more effective at the stages of the disease that we studied,” said Knowles.

The researchers are now planning to look at the earlier processes in the development of the disease, and extend the studies to other diseases such as Frontal temporal dementia, traumatic brain injury and progressive supranuclear palsy where tau aggregates are also formed during disease.

(Image caption: SumaLateral Whole Brain Image. Credit: National Institute of Mental Health, National Institutes of Health, USA)

Research identifies likely cause of Alzheimer’s disease

The study, published in the prestigious PLOS Biologyjournal and tested on mouse models,identified that a probable cause of Alzheimer’s disease was the leakage from blood into the brain of fat-carrying particles transporting toxic proteins.

Lead investigator Curtin Health Innovation Research Institute (CHIRI) Director Professor John Mamo said his collaborative group of Australian scientists had identified the probable ‘blood-to-brain pathway’ that can lead to Alzheimer’s disease, the most prevalent form of dementia globally.

“While we previously knew that the hallmark feature of people living with Alzheimer’s disease was the progressive accumulation of toxic protein deposits within the brain called beta-amyloid, researchers did not know where the amyloid originated from, or why it deposited in the brain,” Professor Mamo said.

“Our research shows that these toxic protein deposits that form in the brains of people living with Alzheimer’s disease most likely leak into the brain from fat carrying particles in blood, called lipoproteins.

“This ‘blood-to-brain pathway’ is significant because if we can manage the levels in blood of lipoprotein-amyloid and prevent their leakage into the brain, this opens up potential new treatments to prevent Alzheimer’s disease and slow memory loss.”

Building on previous award-winning research that showed beta-amyloid is made outside the brain with lipoproteins, Professor Mamo’s team tested the ground-breaking ‘blood-to-brain pathway’ by genetically engineering mouse models to produce human amyloid-only liver that make lipoproteins.

“As we predicted, the study found that mouse models producing lipoprotein-amyloid in the liver suffered inflammation in the brain, accelerated brain cell death and memory loss,” Professor Mamo said.

“While further studies are now needed, this finding shows the abundance of these toxic protein deposits in the blood could potentially be addressed through a person’s diet and some drugs that could specifically target lipoprotein amyloid, therefore reducing their risk or slowing the progression of Alzheimer’s disease.”

Alzheimer’s WA Chairman Adjunct Professor Warren Harding said the findings may have a significant global impact for the millions of people living with Alzheimer’s disease.

“Having universities like Curtin working with the pharmaceutical industry is important if we are to tackle this devastating disease,” Mr Harding said.

“In Australia, approximately 250 people are diagnosed with dementia daily, adding to the staggering half a million Australians who are already living with dementia. Without significant medical advances like the breakthrough Professor Mamo’s team has made, it is estimated that the number of Australians living with dementia will exceed one million by 2058. This has a significant impact on families, carers and communities.”

Professor Mamo and his research team’s previous research in this area was awarded the NHMRC-Marshall and Warren Award for the most innovative and potentially transformative research.

Currently, the team is conducting a clinical trial, the Probucol in Alzheimer’s-clinical trial, which is based on previous findings that a historic cardiovascular agent lowers lipoprotein-amyloid production and supports cognitive performance in mice. The mouse models used for this research were developed together with Ozgene.

Cholesterol Drives Alzheimer’s Plaque Formation

Cholesterol manufactured in the brain appears to play a key role in the development of Alzheimer’s disease, new researchindicates.

Scientists from the School of Medicine and their collaborators found that cholesterol produced by cells called astrocytes is required for controlling the production of amyloid beta, a sticky protein that builds up in the brains of patients with Alzheimer’s. The protein accumulates into insoluble plaques that are a hallmark of the disease. Many efforts have targeted these plaques in the hope that removing or preventing them could treat or prevent Alzheimer’s.

The new findings offer important insights into how and why the plaques form and may explain why genes associated with cholesterol have been linked to increased risk for Alzheimer’s. The results also provide scientists with important direction as they seek to prevent Alzheimer’s from developing.

“This study helps us to understand why genes linked to cholesterol are so important to the development of Alzheimer’s disease,” said researcher Heather A. Ferris, MD, PhD, of UVA’s Division of Endocrinology and Metabolism. “Our data point to the importance of focusing on the production of cholesterol in astrocytes and the transport to neurons as a way to reduce amyloid beta and prevent plaques from ever being formed.”

Alzheimer’s Plaques and Cholesterol

While cholesterol is often associated with clogged arteries and heart disease, it plays important roles in the healthy body. The body makes cholesterol naturally so it can produce hormones and carry out other important functions. The new discovery from Ferris and her collaborators adds a new entry to cholesterol’s list of responsibilities.

The work also sheds light on the role of astrocytes in Alzheimer’s disease. Scientists have known that these common brain cells undergo dramatic changes in Alzheimer’s, but they have been uncertain if the cells were suffering from the disease or contributing to it. The new results from Ferris and her collaborators suggest the latter.

The scientists found that astrocytes help drive the progression of Alzheimer’s by making and distributing cholesterol to brain cells called neurons. This cholesterol buildup increases amyloid beta production and, in turn, fuels plaque accumulation.

Normally, cholesterol is kept quite low in neurons, limiting the buildup of amyloid beta. But in Alzheimer’s, the neurons lose their ability to regulate amyloid beta, and the result is plaque formation.

Blocking the astrocytes’ cholesterol manufacturing “robustly” decreased amyloid beta production in lab mice, the researchers report in a new scientific paper. It’s too soon to say if this could be mimicked in people to prevent plaque formation, but the researchers believe that further research is likely to yield important insights that will benefit the battle against Alzheimer’s.

The fact that amyloid beta production is normally tightly controlled suggests that it may play an important role in brain cells, the researchers say. As such, doctors may need to be careful in trying to block or remove amyloid beta. Additional research into the discovery could shed light on how to prevent the over-production of amyloid beta as a strategy against Alzheimer’s, the researchers believe.

“If we can find strategies to prevent astrocytes from over-producing cholesterol, we might make a real impact on the development of Alzheimer’s disease,” Ferris said. “Once people start having memory problems from Alzheimer’s disease, countless neurons have already died. We hope that targeting cholesterol can prevent that death from ever occurring in the first place.”

Does Alzheimer’s disease start inside nerve cells?

An experimental study from Lund University in Sweden has revealed that the Alzheimer’s protein amyloid-beta accumulates inside nerve cells, and that the misfolded protein may then spread from cell to cell via nerve fibres. This happens at an earlier stage than the formation of amyloid-beta plaques in the brain, something that is associated with the progression of Alzheimer’s disease.

The study in question builds on previous research based on amyloid-beta’s prion-like properties. This means that the protein adopts a misfolded form that acts as a template for spreading in the brain, where it accumulates and develops plaques.

“The plaques of amyloid-beta outside the nerve cells have long been a target for treatment of Alzheimer’s disease. But as treatments to remove plaque have not helped against dementia, we must develop and investigate other hypotheses in order to find other targets for treatment. Our results indicate that amyloid-beta is highly relevant, but that we must focus on misfolded amyloid-beta inside the nerve cells that arise far earlier than the visible plaques”, says the first author of the study Tomas Roos, doctoral student at Lund University and resident physician at Skåne University Hospital’s neurological clinic.

Amyloid-beta is present in the brain of healthy individuals, but the mechanisms that are disrupted and cause the misfolding remain unclear. The plaques are extracellular, but the results of this study indicate that a misfolding can occur within the cells. Furthermore, the researchers show that there is a continuous exchange of amyloid-beta between the outside and inside of nerve cells, a kind of equilibrium, that is disturbed when misfolded amyloid-beta accumulates both inside and outside nerve cells.

In the study, which was conducted using a mouse model for Alzheimer’s and cell culture, the researchers also noted that misfolded amyloid-beta inside the nerve cells leads to increased amyloid-beta production.

“The increased amyloid-beta caused by misfolded amyloid-beta inside cells can bring about a vicious circle of more and more amyloid-beta production. This could explain the enormous amounts of amyloid-beta that accumulate in the brain of Alzheimer’s patients. First and foremost, the study results are to be replicated in a different Alzheimer’s model. However, our results indicate that many of amyloid-beta’s damaging effects may be caused by what is happening within the cells, independent of plaques. This may explain why so many experimental treatments targeting plaques outside the nerve cells have failed and that we should focus our attention inwards,” concludes Tomas Roos.

loading