#rhenium

LIVE
 Giant gate-tunable bandgap renormalization and excitonic effects in a 2-D semiconductorInvestigatin

Giant gate-tunable bandgap renormalization and excitonic effects in a 2-D semiconductor

Investigating the remarkable excitonic effects in two-dimensional (2-D) semiconductors and controlling their exciton binding energies can unlock the full potential of 2-D materials for future applications in photonicandoptoelectronic devices. In a recent study, Zhizhan Qiu and colleagues at the interdisciplinary departments of chemistry, engineering, advanced 2-D materials, physics and materials science in Singapore, Japan and the U.S. demonstrated large excitonic effects and gate-tunable exciton binding energies in single-layer rhenium diselenide(ReSe2) on a back-gated graphene device. They used scanning tunneling spectroscopy (STS) and differential reflectance spectroscopy to measure the quasiparticle (QP) electronic and optical bandgap (Eopt) of single-layer ReSe2 to yield a large exciton binding energy of 520 meV.

The scientists achieved continuous tuning of the electronic bandgap and exciton binding energy of monolayer ReSe2by hundreds of milli-electron volts via electrostatic gating. Qiu et al. credited the phenomenon to tunable Coulomb interactions arising from the gate-controlled free carriers in graphene. The new findings are now published on Science Advances and will open a new avenue to control bandgap renormalization and exciton binding energies in 2-D semiconductors for a variety of technical applications.

Read more.


Post link
loading