#conductivity

LIVE
 How light pulses can create channels that conduct electricity with no resistance in atomically thin

How light pulses can create channels that conduct electricity with no resistance in atomically thin semiconductors

Theoretical physicists at the Department of Energy’s SLAC National Accelerator Laboratory used computer simulations to show how special light pulses could create robust channels where electricity flows without resistance in an atomically thin semiconductor.

If this approach is confirmed by experiments, it could open the door to a new way of creating and controlling this desirable property in a wider range of materials than is possible today.

The result was published in Nature Communications.

Over the past decade, understanding how to create this exotic type of material – known as “topologically protected” because its surface states are impervious to minor distortions – has been a hot research topic in materials science. The best-known examples are topological insulators, which conduct electricity with no resistance in confined channels along their edges or surfaces, but not through their interiors.

Read more.


Post link
 Team develops new material for wearable devices able to restore conductivityThe research team of re

Team develops new material for wearable devices able to restore conductivity

The research team of researcher Hyunseon Seo and senior researcher Dr. Donghee Son of the Korea Institute of Science and Technology’s Biomedical Research Institute, postdoctoral candidate Dr. Jiheong Kang and Professor Zhenan Bao of Stanford University (chemical engineering) announced a new material with high stretchability and high electrical conductivity, with the ability to self-heal even after being subjected to severe mechanical strain. The material could have application in wearable electronic devices.

Prior to this study, Dr. Donghee Son, Dr. Jiheong Kang, and Prof. Zhenan Bao developed a polymer material that is highly elastic, can self-heal without the help of external stimuli even when exposed to water or sweat, and has a mechanical strength similar to that of human skin, making it comfortable to wear for long periods of time.

In its most recent study, the KIST-Stanford research team developed the new material, which can be used as an interconnect, as it has the same properties as existing wearable materials and high levels of electrical conductivity and stretchability, characteristics which allow the stable transmission of electricity and data from the human body to electronic devices.

Read more.


Post link
loading