#lithium sulfur batteries

LIVE

sci:

image

Tesla is at the forefront of industrial battery technology research. 

Electric cars are accelerating commercially. General Motors has already sold 12,000 models of its Chevrolet Bolt and Daimler announced in September 2017 that it is to invest $1bn to produce electric cars in the US, with Investment bank ING, meanwhile, predicts that European cars will go fully electric by 2035.

‘Batteries are a global industry worth tens of billions of dollars, but over the next 10 to 20 years it will probably grow to many hundreds of billions per year,’ says Gregory Offer, battery researcher at Imperial College London. ‘There is an opportunity now to invest in an industry, so that when it grows exponentially you can capture value and create economic growth.’

image

The big opportunity for technology disruption lies in extending battery lifetime, says Offer, whose team at Imperial takes market-ready or prototype battery devices into their lab to model the physics and chemistry going on inside, and then figures out how to improve them.

Lithium batteries, the battery technology of choice, are built from layers, each connected to a current connector and theoretically generating equivalent power, which flows out through the terminals. However, improvements in design of packs can lead to better performance and slower degradation.

image

Lithium batteries need to be adapted for electric vehicle use.Image: Public Domain Pictures

For many electric vehicles, cooling plates are placed on each side of the battery cell, but the middle layers get hotter and fatigue faster. Offer’s group cooled the cell terminals instead, because they are connected to every layer. ‘You want the battery operating warmish, not too hot and not too cold,’ he says.

Keep reading

loading