#lithium ion batteries

LIVE
 Silicon Anode Nanostructure Generates New Potential for Lithium-Ion Batteries Scientists reveal a n

Silicon Anode Nanostructure Generates New Potential for Lithium-Ion Batteries

Scientists reveal a new nanostructure that could revolutionize technology in batteries and beyond.

  • New research has identified a nanostructure that improves the anode in lithium-ion batteries
  • Instead of using graphite for the anode, the researchers turned to silicon: a material that stores more charge but is susceptible to fracturing
  • The team made the silicon anode by depositing silicon atoms on top of metallic nanoparticles
  • The resulting nanostructure formed arches, increasing the strength and structural integrity of the anode
  • Electrochemical tests showed the lithium-ion batteries with the improved silicon anodes had a higher charge capacity and longer lifespan

New research conducted by the Okinawa Institute of Science and Technology Graduate University (OIST) has identified a specific building block that improves the anode in lithium-ion batteries. The unique properties of the structure, which was built using nanoparticle technology, are revealed and explained today (February 5, 2021) in Communications Materials.

Read more.


Post link

materialsworld:

Credit: American Chemical Society 

By Idha Valeur 


You can now 3D print lithium-ion batteries in any shape.

Lithium-ion batteries are normally either cylindrical or rectangular shaped, which forces manufacturers to dedicate a certain size and place for the battery in its design. This way of making electronic devices such as laptops and mobile phones may cause a waste of both space and options to branch out with design.

InACS Applied Energy Materials, researchers present their method of 3D printing which can create the whole structural device, including the battery and with all the electronic components – in almost any shape.

Since the polymers used for printing, like poly(lactic acid) (PLA) are not ionic conductors, the researchers infused PLA with an electrolyte solution as well as adding graphene into the anode or cathode to boost the battery’s electrical conductivity.

Showing the capacity of the printed battery, the team printed a bracelet with an integrated battery. As of now, the battery could only power the green LED for approximately 60 seconds  – making the battery circa two orders of magnitude lower than already commercially available batteries. Although this makes the battery capacity too low to use at the moment, the researchers have multiple ideas to fix the low capacity such as, replacing the PLA materials with 3D printable pastes.  

 Molecular mayhem at root of battery breakdownScientists at Pacific Northwest National Laboratory (P

Molecular mayhem at root of battery breakdown

Scientists at Pacific Northwest National Laboratory (PNNL) have uncovered a molecular game of musical chairs that hurts battery performance.

In an article published in Nature Nanotechnology, the researchers demonstrate how the excitation of oxygen atoms that contributes to better performance of a lithium-ion battery also triggers a process that leads to damage, explaining a phenomenon that has been a mystery to scientists.

The research pinpoints the science behind one barrier on the road to creating longer-lived, higher-capacity rechargeable lithium-ion batteries. It’s an unexpected finding about a process that takes place every day in the batteries that power cell phones, laptop computers, and electric cars.

Read more.


Post link
 Scientists identify another reason why batteries can’t charge in minutesHaste makes waste, as

Scientists identify another reason why batteries can’t charge in minutes

Haste makes waste, as the saying goes. Such a maxim may be especially true of batteries, thanks to a new study that seeks to identify the reasons that cause the performance of fast charged lithium-ion batteries to degrade in electric vehicles.

In new research from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, scientists have found interesting chemical behavior of one of the battery’s two terminals as the battery is charged and discharged.

Lithium-ion batteries contain both a positively charged cathode and a negatively charged anode, which are separated by a material called an electrolyte that moves lithium ions between them. The anode in these batteries is typically made out of graphite—the same material found in many pencils. In lithium-ion batteries, however, the graphite is assembled out of small particles. Inside these particles, the lithium ions can insert themselves in a process called intercalation. When intercalation happens properly, the battery can successfully charge and discharge.

Read more.


Post link
 Lithium-ion batteries will get more efficiency due to silicon, germanium, carbon nanowallsMembers o

Lithium-ion batteries will get more efficiency due to silicon, germanium, carbon nanowalls

Members of the D. V. Skobeltsyn Institute of Nuclear Physic and colleagues from the Faculty of Chemistry of the Lomonosov Moscow State University have developed a new silicon- and germanium-based material that could significantly increase specific characteristics of lithium-ion batteries. The research results have been published in the Journal of Materials Chemistry A.

Lithium-ion batteries are the most popular type of energy storage system for modern electronic devices. They are composed of two electrodes—the negative (anode) and positive (cathode) ones, which are placed into a hermetic enclosure. The space in between is filled with a porous separator, steeped in a lithium ion-conductive electrolyte solution. The separator prevents short circuits between the bipolar electrodes and provides electrolyte volume, necessary for ion transport. Electric current in an external circuit is generated when lithium ions extract from the anode material and move through the electrolyte with further insertion into cathode material. However, the specific capacity of a lithium-ion battery is largely defined by the number of lithium ions that can be accepted and transferred by active materials of the anode and cathode.

The scientists have developed and studied a new anode material that allows energy efficiency of Li-ion batteries to be significantly increased. The material is suitable for utilization in both bulk and thin film Li-ion batteries.

Read more.


Post link
 Silicon solves problems for next-generation battery technologySilicon – the second most abund

Silicon solves problems for next-generation battery technology

Silicon – the second most abundant element in the earth’s crust – shows great promise in Li-ion batteries, according to new research from the University of Eastern Finland. By replacing graphite anodes with silicon, it is possible to quadruple anode capacity.

In a climate-neutral society, renewable and emission-free sources of energy, such as wind and solar power, will become increasingly widespread. The supply of energy from these sources, however, is intermittent, and technological solutions are needed to safeguard the availability of energy also when it’s not sunny or windy. Furthermore, the transition to emission-free energy forms in transportation requires specific solutions for energy storage, and lithium-ion batteries are considered to have the best potential.

Researchers from the University of Eastern Finland introduced new technology to Li-ion batteries by replacing graphite used in anodes by silicon. The study analysed the suitability of electrochemically produced nanoporous silicon for Li-ion batteries. It is generally understood that in order for silicon to work in batteries, nanoparticles are required, and this brings its own challenges to the production, price and safety of the material. However, one of the main findings of the study was that particles sized between 10 and 20 micrometres and with the right porosity were in fact the most suitable ones to be used in batteries. The discovery is significant, as micrometre-sized particles are easier and safer to process than nanoparticles. This is also important from the viewpoint of battery material recyclability, among other things. The findings were published in Scientific Reports.

Read more.


Post link

sci:

image

Tesla is at the forefront of industrial battery technology research. 

Electric cars are accelerating commercially. General Motors has already sold 12,000 models of its Chevrolet Bolt and Daimler announced in September 2017 that it is to invest $1bn to produce electric cars in the US, with Investment bank ING, meanwhile, predicts that European cars will go fully electric by 2035.

‘Batteries are a global industry worth tens of billions of dollars, but over the next 10 to 20 years it will probably grow to many hundreds of billions per year,’ says Gregory Offer, battery researcher at Imperial College London. ‘There is an opportunity now to invest in an industry, so that when it grows exponentially you can capture value and create economic growth.’

image

The big opportunity for technology disruption lies in extending battery lifetime, says Offer, whose team at Imperial takes market-ready or prototype battery devices into their lab to model the physics and chemistry going on inside, and then figures out how to improve them.

Lithium batteries, the battery technology of choice, are built from layers, each connected to a current connector and theoretically generating equivalent power, which flows out through the terminals. However, improvements in design of packs can lead to better performance and slower degradation.

image

Lithium batteries need to be adapted for electric vehicle use.Image: Public Domain Pictures

For many electric vehicles, cooling plates are placed on each side of the battery cell, but the middle layers get hotter and fatigue faster. Offer’s group cooled the cell terminals instead, because they are connected to every layer. ‘You want the battery operating warmish, not too hot and not too cold,’ he says.

Keep reading

 Surprising discovery could lead to better batteriesA collaboration led by scientists at the U.S. De

Surprising discovery could lead to better batteries

A collaboration led by scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has observed an unexpected phenomenon in lithium-ion batteries – the most common type of battery used to power cell phones and electric cars. As a model battery generated electric current, the scientists witnessed the concentration of lithium inside individual nanoparticles reverse at a certain point, instead of constantly increasing. This discovery, which was published on January 12 in the journal Science Advances, is a major step toward improving the battery life of consumer electronics.

“If you have a cell phone, you likely need to charge its battery every day, due to the limited capacity of the battery’s electrodes,” said Esther Takeuchi, a SUNY distinguished professor at Stony Brook University and a chief scientist in the Energy Sciences Directorate at Brookhaven Lab. “The findings in this study could help develop batteries that charge faster and last longer.”

Visualizing batteries on the nanoscale

Inside every lithium-ion battery are particles whose atoms are arranged in a lattice – a periodic structure with gaps between the atoms. When a lithium-ion battery supplies electricity, lithium ions flow into empty sites in the atomic lattice.

Read more.


Post link
 Researchers unlock potential means to reduce reliance on rare metalsA research group, utilizing ine

Researchers unlock potential means to reduce reliance on rare metals

A research group, utilizing inexpensive elements, has demonstrated the feasibility of synthesizing electrode materials for lithium-ion batteries (LIBs). If explored further, this method could reduce industrial reliance on rare metals such as cobalt and nickel.

Details of their results were published in ACS Applied Energy Materials on April 11, 2022.

Rare metals are widely used because they form a suitable crystal structure for LIBs’ key component—cathode materials. In these materials, lithium is easily and reversibly extracted/inserted.

Scientists have long sought ways to incorporate other inexpensive elements into the crystal structure. Yet, just like only a certain amount of salt dissolves into water, the solubility of other elements is limited.

Read more.


Post link
loading