#north carolina state university

LIVE
 Approach paves way for new generation of antimicrobial materialsResearchers at North Carolina State

Approach paves way for new generation of antimicrobial materials

Researchers at North Carolina State University have successfully incorporated “photosensitizers” into a range of polymers, giving those materials the ability to render bacteria and viruses inactive using only ambient oxygen and visible-wavelength light. The new approach opens the door to a range of new products aimed at reducing the transmission of drug-resistant pathogens.

“The transmission of antibiotic-resistant pathogens, including so-called ‘superbugs,’ poses a significant threat to public health, with millions of medical cases occurring each year in the United States alone,” says Reza Ghiladi, associate professor of chemistry at NC State and co-corresponding author of a paper on the work. “Many of these infections are caused by surface-transmitted pathogens.

"Our goal with this work was to develop materials that are self-sterilizing, nontoxic and resilient enough for practical use. And we’ve been successful.”

“A lot of work has been done to develop photosensitizer molecules that use the energy from visible light to convert oxygen in the air into biocidal 'singlet’ oxygen, which effectively punches holes in viruses and bacteria,” says Richard Spontak, distinguished professor of chemical and biomolecular engineering, professor of materials science and engineering at NC State and co-corresponding author of the paper. “There is no resistance to this mode of action.

Read more.


Post link

sci:

image

Solar power is the third most used renewable energy source and its popularity is growing. 

Determining the efficacy of organic solar cell mixtures is a time-consuming and tired practice, relying on post-manufacturing analysis to find the most effective combination of materials.

Now, an international group of researchers – from North Carolina State University in the US and Hong Kong University of Science and Technology – have developed a new quantitative approach that can identify effective mixtures quickly and before the cell goes through production.

image

Development of a thin-film solar cell. Image: science photo/Shutterstock

By using the solubility limit of a system as a parameter, the group looked to find the processing temperature providing the optimum performance and largest processing window for the system, said Harald Ade, co-corresponding author and Professor of Physics at NC State.

‘Forces between molecules within a solar cell’s layers govern how much they will mix – if they are very interactive they will mix but if they are repulsive they won’t,’ he said. ‘Efficient solar cells are a delicate balance. If the domains mix too much or too little, the charges can’t separate or be harvested effectively.’

image

‘We know that attraction and repulsion depend on temperature, much like sugar dissolving in coffee – the saturation, or maximum mixing of the sugar with the coffee, improves as the temperature increases. We figured out the saturation level of the ‘sugar in the coffee’ as a function of temperature,’ he said.

Keep reading

 Researchers discover new photoactivation mechanism for polymer productionA team of researchers from

Researchers discover new photoactivation mechanism for polymer production

A team of researchers from North Carolina State University has demonstrated a way to use low-energy, visible light to produce polymer gel objects from pure monomer solutions. The work not only poses a potential solution to current challenges in producing these materials, it also sheds further light on the ways in which low energy photons can combine to produce high energy excited states.

Polymer products—primarily plastics—are used in everything from water bottles to medical applications, with billions of pounds of these materials being produced annually. Select polymers can be produced via a process called free radical polymerization, in which a monomer solution is exposed to ultraviolet (UV) light. The high energy of UV light enables the reaction, forming the polymer. The advantages of this method include fewer chemical waste byproducts and less environmental impact.

However, this method is not without drawbacks. The high energy UV light used in generating these polymers can also degrade plastics and is unsuitable for producing certain materials.

Read more.


Post link
 Researchers create self-assembled logic circuits from proteinsIn a proof-of-concept study, research

Researchers create self-assembled logic circuits from proteins

In a proof-of-concept study, researchers have created self-assembled, protein-based circuits that can perform simple logic functions. The work demonstrates that it is possible to create stable digital circuits that take advantage of an electron’s properties at quantum scales.

One of the stumbling blocks in creating molecular circuits is that as the circuit size decreases the circuits become unreliable. This is because the electrons needed to create current behave like waves, not particles, at the quantum scale. For example, on a circuit with two wires that are one nanometer apart, the electron can “tunnel” between the two wires and effectively be in both places simultaneously, making it difficult to control the direction of the current. Molecular circuits can mitigate these problems, but single-molecule junctions are short-lived or low-yielding due to challenges associated with fabricating electrodes at that scale.

“Our goal was to try and create a molecular circuit that uses tunneling to our advantage, rather than fighting against it,” says Ryan Chiechi, associate professor of chemistry at North Carolina State University and co-corresponding author of a paper describing the work.

Read more.


Post link
loading