#lithium

LIVE
 Breakthrough Puts All-Solid-State Batteries One Step Closer to Becoming Next-Generation Powerhouse

Breakthrough Puts All-Solid-State Batteries One Step Closer to Becoming Next-Generation Powerhouse

Scientists Reduce All-Solid-State Battery Resistance by Heating

All-solid-state batteries are now one step closer to becoming the powerhouse of next-generation electronics as researchers from Tokyo Tech, AIST, and Yamagata University introduce a strategy to restore their low electrical resistance. They also explore the underlying reduction mechanism, paving the way for a more fundamental understanding of the workings of all-solid-state lithium batteries.

All-solid-state lithium batteries have become the new craze in materials science and engineering as conventional lithium-ion batteries can no longer meet the standards for advanced technologies, such as electric vehicles, which demand high energy densities, fast charging, and long cycle lives. All-solid-state batteries, which use a solid electrolyte instead of a liquid electrolyte found in traditional batteries, not only meet these standards but are comparatively safer and more convenient as they have the possibility to charge in a short time.

Read more.


Post link
 Silicon Anode Nanostructure Generates New Potential for Lithium-Ion Batteries Scientists reveal a n

Silicon Anode Nanostructure Generates New Potential for Lithium-Ion Batteries

Scientists reveal a new nanostructure that could revolutionize technology in batteries and beyond.

  • New research has identified a nanostructure that improves the anode in lithium-ion batteries
  • Instead of using graphite for the anode, the researchers turned to silicon: a material that stores more charge but is susceptible to fracturing
  • The team made the silicon anode by depositing silicon atoms on top of metallic nanoparticles
  • The resulting nanostructure formed arches, increasing the strength and structural integrity of the anode
  • Electrochemical tests showed the lithium-ion batteries with the improved silicon anodes had a higher charge capacity and longer lifespan

New research conducted by the Okinawa Institute of Science and Technology Graduate University (OIST) has identified a specific building block that improves the anode in lithium-ion batteries. The unique properties of the structure, which was built using nanoparticle technology, are revealed and explained today (February 5, 2021) in Communications Materials.

Read more.


Post link

materialsworld:

image

By Khai Trung Le


A new type of battery developed by researchers at MIT could be made partly from carbon dioxide captured from power plants. Rather than attempting to convert carbon dioxide to specialized chemicals using metal catalysts, which is currently highly challenging, this battery could continuously convert carbon dioxide into a solid mineral carbonate as it discharges.

The battery is made from lithium metal, carbon, and an electrolyte that the researchers designed. While still based on early-stage research and far from commercial deployment, the new battery formulation could open up new avenues for tailoring electrochemical carbon dioxide conversion reactions, which may ultimately help reduce the emission of the greenhouse gas to the atmosphere.

Currently, power plants equipped with carbon capture systems generally use up to 30 percent of the electricity they generate just to power the capture, release, and storage of carbon dioxide. Anything that can reduce the cost of that capture process, or that can result in an end product that has value, could significantly change the economics of such systems, the researchers say.

Betar Gallant, Assistant Professor of Mechanical Engineering at MIT, said, ‘Carbon dioxide is not very reactive. Trying to find new reaction pathways is important.’Ideally, the gas would undergo reactions that produce something worthwhile, such as a useful chemical or a fuel. However, efforts at electrochemical conversion, usually conducted in water, remain hindered by high energy inputs and poor selectivity of the chemicals produced.

The team looked into whether carbon-dioxide-capture chemistry could be put to use to make carbon-dioxide-loaded electrolytes — one of the three essential parts of a battery — where the captured gas could then be used during the discharge of the battery to provide a power output.

The team developed a new approach that could potentially be used right in the power plant waste stream to make material for one of the main components of a battery. By incorporating the gas in a liquid state, however, Gallant and her co-workers found a way to achieve electrochemical carbon dioxide conversion using only a carbon electrode. The key is to preactivate the carbon dioxide by incorporating it into an amine solution.

‘What we’ve shown for the first time is that this technique activates the carbon dioxide for more facile electrochemistry,’ Gallant says. ‘These two chemistries — aqueous amines and nonaqueous battery electrolytes — are not normally used together, but we found that their combination imparts new and interesting behaviors that can increase the discharge voltage and allow for sustained conversion of carbon dioxide.’

The battery is made from lithium metal, carbon, and an electrolyte that the researchers designed. While still based on early-stage research and far from commercial deployment, the new battery formulation could open up new avenues for tailoring electrochemical carbon dioxide conversion reactions, which may ultimately help reduce the emission of the greenhouse gas to the atmosphere.

Battery: In-situ Microscopy

 First integrated laser on lithium niobate chipFor all the recent advances in integrated lithium nio

First integrated laser on lithium niobate chip

For all the recent advances in integrated lithium niobate photonic circuits—from frequency combs to frequency converters and modulators—one big component has remained frustratingly difficult to integrate: lasers.

Long haul telecommunication networks, data center optical interconnects, and microwave photonic systems all rely on lasers to generate an optical carrier used in data transmission. In most cases, lasers are stand-alone devices, external to the modulators, making the whole system more expensive and less stable and scalable.

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) in collaboration with industry partners at Freedom Photonics and HyperLight Corporation, have developed the first fully integrated high-power laser on a lithium niobate chip, paving the way for high-powered telecommunication systems, fully integrated spectrometers, optical remote sensing, and efficient frequency conversion for quantum networks, among other applications.

Read more.


Post link

Battery: In-situ Fatigue

#materials science    #science    #batteries    #fatigue    #carbon    #graphite    #silicon    #lithium    #materials failure    

materialsworld:

Credit: American Chemical Society 

By Idha Valeur 


You can now 3D print lithium-ion batteries in any shape.

Lithium-ion batteries are normally either cylindrical or rectangular shaped, which forces manufacturers to dedicate a certain size and place for the battery in its design. This way of making electronic devices such as laptops and mobile phones may cause a waste of both space and options to branch out with design.

InACS Applied Energy Materials, researchers present their method of 3D printing which can create the whole structural device, including the battery and with all the electronic components – in almost any shape.

Since the polymers used for printing, like poly(lactic acid) (PLA) are not ionic conductors, the researchers infused PLA with an electrolyte solution as well as adding graphene into the anode or cathode to boost the battery’s electrical conductivity.

Showing the capacity of the printed battery, the team printed a bracelet with an integrated battery. As of now, the battery could only power the green LED for approximately 60 seconds  – making the battery circa two orders of magnitude lower than already commercially available batteries. Although this makes the battery capacity too low to use at the moment, the researchers have multiple ideas to fix the low capacity such as, replacing the PLA materials with 3D printable pastes.  

 Molecular mayhem at root of battery breakdownScientists at Pacific Northwest National Laboratory (P

Molecular mayhem at root of battery breakdown

Scientists at Pacific Northwest National Laboratory (PNNL) have uncovered a molecular game of musical chairs that hurts battery performance.

In an article published in Nature Nanotechnology, the researchers demonstrate how the excitation of oxygen atoms that contributes to better performance of a lithium-ion battery also triggers a process that leads to damage, explaining a phenomenon that has been a mystery to scientists.

The research pinpoints the science behind one barrier on the road to creating longer-lived, higher-capacity rechargeable lithium-ion batteries. It’s an unexpected finding about a process that takes place every day in the batteries that power cell phones, laptop computers, and electric cars.

Read more.


Post link
 Scientists identify another reason why batteries can’t charge in minutesHaste makes waste, as

Scientists identify another reason why batteries can’t charge in minutes

Haste makes waste, as the saying goes. Such a maxim may be especially true of batteries, thanks to a new study that seeks to identify the reasons that cause the performance of fast charged lithium-ion batteries to degrade in electric vehicles.

In new research from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, scientists have found interesting chemical behavior of one of the battery’s two terminals as the battery is charged and discharged.

Lithium-ion batteries contain both a positively charged cathode and a negatively charged anode, which are separated by a material called an electrolyte that moves lithium ions between them. The anode in these batteries is typically made out of graphite—the same material found in many pencils. In lithium-ion batteries, however, the graphite is assembled out of small particles. Inside these particles, the lithium ions can insert themselves in a process called intercalation. When intercalation happens properly, the battery can successfully charge and discharge.

Read more.


Post link
 Lithium-ion batteries will get more efficiency due to silicon, germanium, carbon nanowallsMembers o

Lithium-ion batteries will get more efficiency due to silicon, germanium, carbon nanowalls

Members of the D. V. Skobeltsyn Institute of Nuclear Physic and colleagues from the Faculty of Chemistry of the Lomonosov Moscow State University have developed a new silicon- and germanium-based material that could significantly increase specific characteristics of lithium-ion batteries. The research results have been published in the Journal of Materials Chemistry A.

Lithium-ion batteries are the most popular type of energy storage system for modern electronic devices. They are composed of two electrodes—the negative (anode) and positive (cathode) ones, which are placed into a hermetic enclosure. The space in between is filled with a porous separator, steeped in a lithium ion-conductive electrolyte solution. The separator prevents short circuits between the bipolar electrodes and provides electrolyte volume, necessary for ion transport. Electric current in an external circuit is generated when lithium ions extract from the anode material and move through the electrolyte with further insertion into cathode material. However, the specific capacity of a lithium-ion battery is largely defined by the number of lithium ions that can be accepted and transferred by active materials of the anode and cathode.

The scientists have developed and studied a new anode material that allows energy efficiency of Li-ion batteries to be significantly increased. The material is suitable for utilization in both bulk and thin film Li-ion batteries.

Read more.


Post link

technology-org:

Lithium nickel manganese cobalt oxide, or NMC, is one of the most promising chemistries for better lithium batteries, especially for electric vehicle applications, but scientists have been struggling to get higher capacity out of them. Now researchers at Lawrence Berkeley National Laboratory…

Read more

technology-org:

image

Developed by researchers at the University of Texas, Austin, the new membrane-free semi-liquid battery, consisting of a liquid ferrocene electrolyte, a liquid cathode and a solid lithium anode, exhibited encouraging early results, encompassing many of the features desired in a state-of-the-art…

Read more

 Lithium – it’s not just for batteries: It can also reduce instabilities in fusion plasm

Lithium – it’s not just for batteries: It can also reduce instabilities in fusion plasmas

You may be most familiar with the element lithium as an integral component of your smart phone’s battery, but the element also plays a role in the development of clean fusion energy. When used on tungsten surfaces in fusion devices, lithium can reduce periodic instabilities in plasma that can damage the reactor walls, scientists have found.

The results, demonstrated by scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and collaborators on China’s Experimental Advanced Superconducting Tokamak (EAST) found that lithium powder can eliminate instabilities known as edge-localized modes (ELMs) when used to coat a tungsten plasma-facing component called the “divertor” – the unit that exhausts waste heat and particles from plasma that fuels fusion reactions. If left alone, such instabilities can damage the divertor and cause fusion reactions to fizzle.

The results are good news for future devices that plan to use tungsten for their own divertors that are designed to work with lithium.

Read more.


Post link
 Surprising discovery could lead to better batteriesA collaboration led by scientists at the U.S. De

Surprising discovery could lead to better batteries

A collaboration led by scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has observed an unexpected phenomenon in lithium-ion batteries – the most common type of battery used to power cell phones and electric cars. As a model battery generated electric current, the scientists witnessed the concentration of lithium inside individual nanoparticles reverse at a certain point, instead of constantly increasing. This discovery, which was published on January 12 in the journal Science Advances, is a major step toward improving the battery life of consumer electronics.

“If you have a cell phone, you likely need to charge its battery every day, due to the limited capacity of the battery’s electrodes,” said Esther Takeuchi, a SUNY distinguished professor at Stony Brook University and a chief scientist in the Energy Sciences Directorate at Brookhaven Lab. “The findings in this study could help develop batteries that charge faster and last longer.”

Visualizing batteries on the nanoscale

Inside every lithium-ion battery are particles whose atoms are arranged in a lattice – a periodic structure with gaps between the atoms. When a lithium-ion battery supplies electricity, lithium ions flow into empty sites in the atomic lattice.

Read more.


Post link

materialsworld:

Credit: SolidEnergy Systems

A spinout company of MIT, USA, has produced a new rechargeable lithium metal battery that can double the energy capacity of lithium-ion batteries and could make smartphones, drones and electric cars last twice as long.

The company behind the design, SolidEnergy Systems, developed the anode-free lithium metal battery by replacing a common battery anode material, graphite, for very thin, high-energy lithium-metal foil, which can hold more ions to increase energy capacity.

Hu, co-inventor and CEO of SolidEnergy commented, ‘With two-times the energy density, we can make a battery half the size, but that still last the same amount of time, as a lithium ion battery. Or we can make a battery the same size as a lithium ion battery, but now it will last twice as long.’

Hu developed a solid and liquid hybrid electrolyte solution. He coated the lithium metal foil with a thin solid electrolyte that doesn’t require heat. He also created a quasi-ionic liquid electrolyte, which proved inflammable, and has additional chemical modifications to the separator and cell design to stop it from negatively reacting with the lithium metal.

The final result was a battery with energy-capacity perks of lithium metal batteries, but with the safety and longevity features of lithium ion batteries able to operate at room temperature. ‘Combining the solid coating and new high-efficiency ionic liquid materials was the basis for SolidEnergy on the technology side,’ adds Hu.

The chemical modifications to the electrolyte allow the lithium metal batteries to be rechargeable and safer to use. The SolidEnergy has now moved into bigger space and Hu is hoping to ramp up production for their November launch.

 Quantum material is promising ‘ion conductor’ for research, new technologiesResearchers

Quantum material is promising ‘ion conductor’ for research, new technologies

Researchers have shown how to shuttle lithium ions back and forth into the crystal structure of a quantum material, representing a new avenue for research and potential applications in batteries, “smart windows” and brain-inspired computers containing artificial synapses.

The research centers on a material called samarium nickelate, which is a quantum material, meaning its performance taps into quantum mechanical interactions. Samarium nickelate is in a class of quantum materials called strongly correlated electron systems, which have exotic electronic and magnetic properties.

The researchers “doped” the material with lithium ions, meaning the ions were added to the material’s crystal structure.

The addition of lithium ions causes the crystal to expand and increases the material’s conduction of the ions. The researchers also learned that the effect works with other types of ions, particularly sodium ions, pointing to potential applications in energy storage.

Read more.


Post link
 Peering at the crystal structure of lithiumElemental metals usually form simple, close-packed cryst

Peering at the crystal structure of lithium

Elemental metals usually form simple, close-packed crystalline structures. Though lithium (Li) is considered a typical simple metal, its crystal structure at ambient pressure and low temperature remains unknown.

Lawrence Livermore National Laboratory (LLNL) researchers recently came up with a technique to obtain structural information for Li at conditions where traditional crystallographic methods are insufficient. Using this methodology, a decades-long puzzle finally may be solved.

Li is the lightest metal and least dense solid element at ambient conditions. Li and its compounds have several industrial applications, including heat-resistant glass and ceramics, lithium grease lubricants, flux additives for iron, steel and aluminum production, lithium batteries and lithium-ion batteries. These uses consume more than three quarters of lithium production.

“The superconductivity of alkali metals, and Li, is an issue that has been debated for many years,” said Stanimir Bonev, LLNL lead author of a paper appearing in a recent edition of Proceedings of the National Academy of Sciences. “Only recently superconductivity in Li at ambient pressure was observed. But to understand the superconducting properties, it is essential to know the crystal structure.”

Read more.


Post link

My mood is a lot better and I actually feel like a person again. I even left my room and spoke to actual humans last night.

Lesson learned: take your fucking meds.

loading