#manganese

LIVE

materialsworld:

Heated magnetic nanoparticles may be the future of eradicating cancer cells without harming healthy tissue, according to research from the University of Buffalo, USA. The nanoparticles strike tumours with significant heat under a low magnetic field.

Hao Zeng, Professor of Physics at Buffalo, said, ‘The main accomplishment of our work is the greatly enhanced heating performance of nanoparticles under low-field conditions suitable for clinical applications. The best heating power we obtained is close to the theoretical limit, greatly surpassing some of the best performing particles that other research teams have produced.’

Targeting technologies would first direct nanoparticles to tumours within the patient’s body. Exposure to an alternating magnetic field would prompt the particles’ magnetic orientation to flip back and forth hundreds of thousands of times a second, causing them to warm up as they absorb energy from the electromagnetic field and convert it to thermal energy.

Two particles have been tested – manganese-cobalt-ferrite and zinc ferrite. While the manganese particle reached maximum heating power under high magnetic fields, the biocompatible zinc ferrite was efficieny under an ultra-low field.

While this form of treatment, known as magnetic nanoparticle hyperthermia, is not new, the Buffalo-designed particles are able to generate heat several times faster than the current standard.

 Three dimensional Mn-doped nanosheets as efficient electrocatalysts for alkaline water splittingHyd

Three dimensional Mn-doped nanosheets as efficient electrocatalysts for alkaline water splitting

Hydrogen has attracted extensive attention from academia and industry as an energy source due to its intrinsic environmental compatibility, abundance, and high energy density (120 MJ kg−1). Electrocatalytic water splitting is an environmentally friendly route to produce hydrogen, especially when the electricity is from renewable sources that minimize carbon dioxide emissions throughout the process.

Theoxygen evolution reaction (OER) on the anode and hydrogen evolution reaction (HER) on the cathode are two half-reactions in electrocatalytic water splitting. Pt- and Ru/Ir-based compounds are the best-known high-performance noble metal electrocatalysts for HER and OER, respectively. However, the scarcity and high cost of such noble metals hamper their application in water electrolysis. Therefore, with global prospects, it is essential to develop earth-abundant non-noble metal electrocatalysts for next-generation water splitting technologies. Recently, Ni-based electrocatalysts have been confirmed to be effective for boosting electrocatalytic water splitting, but their performances are not high enough for large-scale hydrogen production.

A team in China has successfully fabricated Mn-doped Ni2O3/Ni2P and Mn-doped NixSy/Ni2P through facile hydrothermal reaction and subsequently phosphorization and sulfurization method.

Read more.


Post link

technology-org:

Just in time for the icy grip of winter: A team of researchers led by scientists from the U.S. Department of Energy Lawrence Berkeley National Laboratory (Berkeley Lab) has identified several mechanisms that make a new, cold-loving material one of the toughest metallic alloys ever. Nanoscale…

Read more

Eco-friendly composite catalyst and ultrasound removes pollutants from water

The research team of Dr. Jae-woo Choi and Dr. Kyung-won Jung of the Korea Institute of Science and Technology’s (KIST, president: Byung-gwon Lee) Water Cycle Research Center announced that it has developed a wastewater treatment process that uses a common agricultural byproduct to effectively remove pollutants and environmental hormones, which are known to be endocrine disruptors.

The sewage and wastewater that are inevitably produced at any industrial worksite often contain large quantities of pollutants and environmental hormones (endocrine disruptors). Because environmental hormones do not break down easily, they can have a significant negative effect on not only the environment but also the human body. To prevent this, a means of removing environmental hormones is required.

The performance of the catalyst that is currently being used to process sewage and wastewater drops significantly with time. Because high efficiency is difficult to achieve given the conditions, the biggest disadvantage of the existing process is the high cost involved. Furthermore, the research done thus far has mostly focused on the development of single-substance catalysts and the enhancement of their performance. Little research has been done on the development of eco-friendly nanocomposite catalysts that are capable of removing environmental hormones from sewage and wastewater.

The KIST research team, led by Dr. Jae-woo Choi and Dr. Kyung-won Jung, utilized biochar, which is eco-friendly and made from agricultural byproducts, to develop a wastewater treatment process that effectively removes pollutants and environmental hormones. The team used rice hulls, which are discarded during rice harvesting, to create a biochar** that is both eco-friendly and economical. The surface of the biochar was coated with nano-sized manganese dioxide to create a nanocomposite. The high efficiency and low cost of the biochar-nanocomposite catalyst is based on the combination of the advantages of the biochar and manganese dioxide.

Read more.

 Improving earthquake resistance with a single crystalA new heating method for certain metals could

Improving earthquake resistance with a single crystal

A new heating method for certain metals could lead to improved earthquake-resistant construction materials.

Tohoku University researchers and colleagues have found an economical way to improve the properties of some ’shape memory’ metals, known for their ability to return to their original shape after being deformed. The method could make way for the mass production of these improved metals for a variety of applications, including earthquake-resistant construction materials.

Most metals are made of a large number of crystals but, in some cases, their properties improve when they are formed of a single crystal. However, single-crystal metals are expensive to produce.

Researchers have developed a cheaper production method that takes advantage of a phenomenon known as ‘abnormal grain growth.’ By using this method, a metal’s multiple 'grains’, or crystals, grow irregularly, some at the expense of others, when it is exposed to heat.

The team’s technique involves several cycles of heating and cooling that results in a single-crystal metal bar 70 centimetres in length and 15 millimetres in diameter. This is very large compared to the sizes of current shape memory alloy bars, making it suitable for building and civil engineering applications, says Toshihiro Omori, the lead researcher in the study.

Read more.


Post link

technology-org:

Lithium nickel manganese cobalt oxide, or NMC, is one of the most promising chemistries for better lithium batteries, especially for electric vehicle applications, but scientists have been struggling to get higher capacity out of them. Now researchers at Lawrence Berkeley National Laboratory…

Read more

 Study identifies metallic antiferromagnet with potential for memory devicesAntiferromagnets have ge

Study identifies metallic antiferromagnet with potential for memory devices

Antiferromagnets have generated significant interest for future computing technologies due to their fast dynamics, their ability to generate and detect spin-polarized electric currents, and their robustness against external magnetic fields. Despite these bright prospects, the vanishing total magnetization in antiferromagnets makes it difficult to evaluate their internal magnetic structure compared with their ferromagnetic counterparts.

Limited understanding of the internal magnetic structure of antiferromagnetic materials and devices is a major obstacle to manipulating and efficiently utilizing variations in their magnetic state. In work that sheds light on a new set of antiferromagnetic materials, an international research team led by researchers at the National Institute of Standards and Technology (NIST), the United States Naval Research Laboratory, the Johns Hopkins University, the Institute for Solid State Physics (ISSP), and the University of Tokyo have identified a metallic antiferromagnet (Mn3Sn) that exhibits a large spontaneous magneto-optic Kerr effect (MOKE), despite a vanishing total magnetization at room temperature. A metallic antiferromagnet with a large spontaneous MOKE promises to be a vital tool for future antiferromagnetic memory devices, where the device state could be read optically and switched either optically or with a spin-polarized electric current.

Read more.


Post link
Salt curing is the act of using salt to draw moisture out of meat for the purposes of making it safe

Salt curing is the act of using salt to draw moisture out of meat for the purposes of making it safe to eat for longer, as seen in this delicious-looking ham stalactite from Argentina.


Post link
Rhodochrosite on Manganese & Iron MatrixLocality: NChwaning I Mine, Kuruman, North Cape ProvinceRhodochrosite on Manganese & Iron MatrixLocality: NChwaning I Mine, Kuruman, North Cape Province

Rhodochrosite on Manganese & Iron Matrix

Locality: NChwaning I Mine, Kuruman, North Cape Province, South Africa

Size: 5.8 × 4.8 × 2.3 cm


Post link
loading