#mandalic geometry

LIVE

Can a number system be both the new kid on the block and older than written history?

image

The real number system as it exists today has been with us for a few centuries.  In foundation it is monovalent,  monophasic,  and sequential.

The probable number system dates to prehistory but was lost in the mists of time until recently rediscovered and resurrected.  In contrast to the real number system it is foundationally bivalent, biphasic, and cyclic.

The probable number system has considerably more structure than the real number system and is therefore more robust.  In this sense, it is similar to the complex number system.

In contrast to the complex number system,  the probable number system in its foundation presupposes that numbers can assume wavelike forms capable of  constructive and destructive interference  operationally through the compositing of higher to lower dimension.

By means of compositing of dimension probable numbers are able to  distribute  throughout the entire  mandalic unit vector cube  (which is structurally a  superposition  of  the 6-dimensional unit vector hypercube on the 3-dimensional unit vector cube) a function analogous in important ways  to that performed in the complex number system by the centralized imaginary unit i.

Another important way in which the probable number system differs from both the real number system and the complex number system is the absence of  nothingness  and the zero representing it.  In its place we find the concepts of  balance and equilibrium.  Nullification still exists in form of annihilation and its opposite in the form of creation.  But the Cartesian coordinate system  of ordered pairs and ordered triads  is transformed by this approach to handling number and dimension  from a ring into a field of hyperdimensional numbers over real numbers in three dimensions.

(to be continued)


© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 315-

Toward a new geometry

image


Definitions and guiding principles

  • Dimension is a primitive concept which for purposes here can be defined as any linearly independent parameter or variable.
  • Mathematics is most fundamentally about measurement.
  • Rules of mathematics are conceptual tools developed by the human mind and are subject to change if and when such should prove necessary or utilitarian.
  • Points, lines and planes are products of the human mind. Neither they nor the realities they represent have continuous existence in space or time but can recur intermittently at intervals which may be either regular or irregular. As a matter of convenience for purposes of description, however, any or all of these may be represented as existing in some continuous abstract sense.
  • The whole is greater than the part and has emergent properties not found in any single part or any number of subdivisions of the whole.
  • The consequences of number structure and interaction cannot be explained entirely on a local basis but emerge from holo-interactive dynamic processs throughout an entire system or any portion thereof in conceptual focus.
  • It is always possible to express a reflection as a rotation and a rotation as a reflection. The two are isomorphic via properly chosen operations.
  • Symmetry is of great importance but not always obvious.
  • Two foundational guiding principles of reality are continuity and change. These then provide the basis and primary focus of mandalic geometry.
  • Of the two types of change, cyclic and sequential, cyclic change is the more fundamental.
  • Neither coordinates nor coordinate systems are a feature of nature. They are man-made devices which are pragmatic and utilitarian means by which to grasp a reality which itself has no need of them. Geometry nevertheless requires these crutches to exist and execute its functions.
  • Geometry frequently also requires conventions of expression to promote widespread understanding of content but should strive to be as convention -free as possible.
  • Ambiguity is a permissible feature, in fact a necessary feature, of mandalic geometry. This is related to its probabilistic nature and multiple-valued logic which reflect what we, from our limited vantage point, misunderstand to be paradoxes of nature.


Axioms

  • Numbers can be characterized by dimension of context.
  • A number may be embedded in multiple dimensions concurrently, existing in variant forms specific to the dimension(s) of context.
  • The same number may function differently in different dimensional contexts. The dimension of context of a “point” described by a number or subsidary number delimits its expression. In other words, the expression of a number in spatiotemporal terms is determined by its dimensional context. In referring to a number or subsidiary number in any of their variants, therefore, the dimension of context must always be specified.
  • It may not always be possible to identify the full dimensional context of a number. It is sufficient to determine and elucidate those contexts essential to elaboration of the specific operation(s) under present consideration.
  • Numbers are not necessarily elemental. They may consist of parts or subsidiary numbers which refer to various different dimensional contexts.
  • A point is not dimensionless extension in space. It is an emergent feature of the system-as-a-whole which appears intermittently at the common intersection of three or more dimensions. Points, lines and planes are evanescent occurrences in terms of geometry and spacetime. They, and the things they represent, are fleeting events which come and go. Repetition is possible (in a conceptual sense certainly; possibly in a material/energetic sense as well) but not inevitable.


Rejected definitions

  • The definition of a point found in Euclid’s Elements: A point is that which has no part. [This definition may or may not have been in Euclid’s original Elements.]
  • The definition of a line found in Euclid’s Elements: A line is breadthless length.
  • The definition of a surface found in Euclid’s Elements: A surface is that which has length and breadth only.


Rejected axioms

  • The real numbers are order-isomorphic to the linear continuum of geometry. In other words, the axiom states that there is a one to one correspondence between real numbers and points on a line. This has been described as the Cantor–Dedekind axiom. The Cartesian coordinate system implicitly assumes this axiom which then becomes the cornerstone of analytic geometry.


Rejected notions

  • Things which coincide with one another equal one another. [Euclid’s Common notion 4]


Also important to note:

  • Euclid’s first postulate states that any two points can be joined by a straight line segment. It does not say that there is only one such line; it merely says that a straight line can be drawn between any two points.


Image credit: James Gyre-Naked Geometry


© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 314-

Magic Theatre: For Madmen Only

image

If we describe a Cartesian ordered triad by x,y,z we can describe an analogous 6-dimensional ordered sextuplet  or 6-tuple  by xa,ya,za,xb,yb,zb

The definitions that translate a 6-dimensional ordered sextuplet (hexagram in Taoist terminology) into a 3-dimensional ordered triad (trigram in Taoist terminology) are:[1]

  • (xa + xb) / 2 = x
  • (ya + yb) / 2 = y
  • (za + zb) / 2 = z

I think the methodology will work for all scalar quantities. But as currently formulated,  mandalic geometry (MG) is a discrete geometry based entirely on unit vectors.  We are talking about the line segments between -1 and +1 in the various dimensions and only points -1, 0, and +1 in each line segment in Cartesian terms.

In essence we are not yet particularly concerned with scalars here but only with vectors :  -, +, and neutral (0).

Mathematically √−1 is important because by adding it to the real number field, as we have done, we create the algebraically complete field of complex numbers. In mathematics, a complete field is a field equipped with a metric and complete with respect to that metric. The real numbers and complex numbers are both complete fields. Cartesian coordinates- - - ordered pairs and ordered triads- - - although based on real numbers,  do not form a field. This has important implications, implications which can be ignored only at peril to the particular conceptual system involved..

The definitions above all give three possible results in Cartesian terms: -1, 0, +1.  Remember though MG hybridizes six dimensions with three dimensions and represents them superimposed. Wherever one or more zeros occurs in Cartesian coordinates we have also corresponding 6-dimensional forms,  composed of just +1s and -1s,  of which there are always two for each Cartesian zero.  A Cartesian ordered triad with one zero is associated with two such 6-dimensional forms; an ordered triad with two zeros, with four; an ordered triad with three zeros (the origin), with eight. An ordered triad without zeros will have only one associated 6-dimensional form.  This constitutes the mandalic pattern, which is an essential feature of the 6D/3D formulation of this geometric system and isomorphism naturally comes into play here as well.

Andthat is how and why all numbers in this coordinate system based on higher-dimensional extensions of the real numbers “square” to numbers which can be  either positive or negative  and then reduce or "collapse" to corresponding Cartesian forms that preserve the same sign. This is a necessary result of the fact that a primary “zero form” in
6-dimensional terms is lacking,  only +1s and -1s exist.  These can then interfere constructively and destructively as number waves, to produce a  "secondary zero"  by destructive interference  whenever linked forms differ in sign in one or more paired dimensions. Since the two linked 6-dimensional numbers are always inverse to one another, any Cartesian zero then can be substituted with two such 6-dimensional forms. This is the process that makes imaginary numbers unnecessary, replacing them with two inversely related probable numbers which behave in most ways like real numbers  and  are  distributed  throughout the entire geometric system.

“Hybridization” is probably not the best term here but will be used until I can think of a better descriptor. What I intend is not actual joining and unification,  but rather  a superposition and conceptual commingling in three-dimensional terms. Such a representational mapping substitutes for all Cartesian forms  "equivalent" forms  containing only 1s and -1s, no zeros.  In so doing, it effectively converts the Cartesian coordinate system from just a ring to a field as well, properly interpreted. Basically then, the probable numbers do for the real numbers much the same as the complex numbers do,  but with even greater and more utilitarian results which are also more easily managed.

In operational terms, complex numbers perform two rather simple binary operations: a scaling and a rotation. Scaling capability is clearly inherited through its real number lineage; rotational capacity, from its imaginary number lineage.  Together,  scaling and rotation combine to augment or diminish an axis of growth and produce vector ambulation in a circular path about a central origin point of reference.  The scaling factor  could be said to detemine the  radius of revolution;  the rotation factor, the angle of revolution. And that’s pretty much all there is to the “great mystery”  of complex numbers.  Their importance  resides in the great number of fields of endeavor where the combination of these two superpowers is necessary and/or convenient.

Nature uses this combination of scaling and rotation in many of its processes.  Atomic and subatomic proceedings  are probably not among these.  How then did it come about that  quantum mechanics  arrived at the notion that  rotation and scaling  could be applicable to modeling of discontinuos states of being?  Both refer to changes through continuous space. I think it was an accident of history. In 1925, Erwin Schrödinger, in his search for a way to explain  certain mysteries then perplexing the greatest physicists of the day,  hit upon his  eponymous equation  which appeared to do the trick.  So well,  in fact,  that quantum mechanics has been  justly considered  the single most successful description of reality ever devised. And the equation that basically accomplished this success involves the imaginary number i and complex numbers.[2]

An important aspect of the operation of rotation, one which may have bearing on the Schrödinger equation and its huge success, has been largely overlooked. The result of a rotation can often mimic the result of inversion (reflection through a point), making the two indistinguishable by measurement alone. To someone wearing a blindfold there is no way to tell whether i has by the operations of squaring and rotation changed itself into  -1  or  -1,  the inversion element of multiplication,  has simply reflected  +1,  the identity element of multiplication,  through the origin point to  -1.  Explaining away a 90° rotation with a right angle reflection will no doubt prove more difficult but let’s not just yet deny that it might be doable.

Could there be a way to reformulate the Schrödinger equation then so it contains no imaginary or complex numbers?  Many have tried to do that very thing and failed. No one has succeeded in nearly a century. Still, we might wonder if the time is ripe now to remove the blindfold. Perhaps we might do well to inquire whether quantum physics is, in some manner we don’t quite understand, a victim of its own success.

In theory, circumventing use of complex numbers in a defining equation of quantum mechanics should be possible. On what basis do I say this?  The equation we have now relies on complex numbers.  These in turn derive an ability to produce rotation from the imaginary number √−1 .  But there are  other mathematical means  to accomplish the same. Trigonometry comes most immediately to mind. The circle and cyclicity it models have a very long and distinguished history. Complex numbers as we’ve noted can also produce scaling.  But so can real numbers.  And close examination reveals  that complex numbers inherit their ability to scale from the two real numbers they contain. The hard truth ultimately is  there is nothing all that special  about  complex numbers  or complex plane. Possibly it is their utilitarian ease of use that positions them as an attractive methodology. Other routes to ease of use exist as well. There is always more than one way to skin the proverbial cat  (even a cat residing only in the mind of a physicist named Schrödinger.)

Consider also, how great is the actual need for scaling in quantum mechanics?  The distance from  centermost part of the atom  to the outer reaches of electron orbital space is in fact quite small.  Furthermore,  the elements of this universe of discourse are quantized,  so actual distances involved are moot.  In the extreme,  the question persists  as to  whether “distance” is a concept even applicable  in this context  of quantum logic. Quantum numbers  themselves  range between 0 and 2.  I can count the allowed values on the fingers of one hand.

Regarding rotation, where exactly does that come into play in the quantum realm?  Electrons do not orbit the nucleus of the atom.  They jump from orbital to orbital by discretized changes in energy involving photon exchange. In the nucleus it seems such discretized instanteous changes take place as well,  obviating any need for rotation.  Obviously physics misguided here by labeling one of the quantum numbers “spin”. Sometimes a rose is best referred to as a rose. The problem here is that we don’t really know what it is that “spin” refers to.

The quintessential equation of quantum mechanics was formulated by a physicist, not a mathematician. It is not a simple algebraic equation, but in general a linear partial differential equation,  describing the time-evolution of the system’s wave function (“state function”). “Derivations” of the Schrödinger equation  do generally demonstrate its mathematical plausibility for describing wave-particle duality. To date, however, there are  no universally accepted derivations  of Schrödinger’s equation from appropriate axioms.  Nor is there any  general agreement  as to what the equation actually signifies.  Moreover, some authors have demonstrated that certain properties  emerging from Schrödinger’s equation  can even be deduced from symmetry principles alone.  This would appear to be a worthwhile direction of investigation to pursue.  Quantum mechanics is most fundamentally about symmetry.  Let’s make Emmy Noether proud by giving her the recognition she deserves.

Finally, it was not without considerabledifficulty that Schrödinger developed his equation.  In the end,  it almost seems  he pulled it out of a hat,  as a magician might a rabbit.[3]   Part of the  Zeitgeist  of the physics community  in the early 1920s  revolved around  the peculiar notion  that particles  behaved as waves.  Schrödinger decided to follow this direction of thought  and  find an appropriate 3-dimensional wave equation for the electron. His equation succeeded beyond his wildest dreams.  Adopted in the canon of  the new physics,  it became the cornerstone of that radically different physics, changed forever. Physics has never looked back since.

Still, one startling and haunting fact persists: nowhere else in all of physics  has it ever been found necessary to invoke complex numbers.

Once,  quite a long time ago,  I believed  imaginary numbers  were wrong. I was the one that was wrong. Later, having grown a little more clever, I came to think that √−1 was a necessary evil- - -correct but not validly applicable to quantum physics. Wrong again. Currently it is my belief that imaginary numbers are guilty of an even worse offense: both true from the mathematical standpoint and partly applicable to physics. The worst of both worlds.  Yielding results that are in large part correct, imaginary and complex numbers have managed to lead us all down the garden path for the better part of a century. Have we then gone past the point of no return?  My contention  is  that it is possible to complete the ring that Cartesian coordinates present  and  transform it to a field over the real numbers, with appeal only to higher-dimensional analogues of the reals and no need for imaginary or complex numbers,  an approach which, if actually possible, would offer certain undeniable advantages.[4]

Essentially the method of composite dimension does away with i and complex numbers by distributing an operation analogous to that of i throughout six dimensions or three in Cartesian terms and then working with same by means of reflections (inversions) only. So an algebra based on the system necessitates use of only the real numbers and their higher dimension extensions that I have called probable numbers.  Only simple addition and multiplication  are required.  For those in the audience who are "sufficiently mad”, there is the added bonus that a kind of division by zero becomes possible. We’ll find out soon enough whether you qualify.


A few additional explanatory remarks are in order here:

Depending on the variant,  Cartesian geometry (CG),  represents space in two or three dimensions. Points in the former are referenced to two pairwise perpendicular axes; in the latter, to three.

Because Descartes assumes as axiomatic a 1:1 correspondence of number to spatial location each of his three axes becomes a facsimile of the number line, only in different dimensions.

Mandalic geometry (MG) approaches representation of space differently, using a hybrid coordinate system which relates a higher dimension space to a lower dimension space  with a 2:1 correlation.

Itcan be represented entirely commensurate with CG, but in so doing a “glass slipper effect” occurs. Just as Cinderella’s stepsisters can manage to force a too fat foot into her glass slipper, the results leave something to be desired.  In our context here,  the  "something to be desired"  is a clear and full understanding of six-dimensional reality in its own right. We end up interpreting it in time-sharing terms of probabilities and randomness.

What Descartes refers to as an ordered pair requires two higher dimension ordered pairs to represent in MG; a Cartesian ordered triad requires three higher dimension ordered pairs to represent in MG.

In Taoist terminology the notational equivalent of a Cartesian ordered pair is a  "bigram",  a two-line symbol,  each line of which  can take one of two values. As a result there are four types of bigram. Two bigrams make up a tetragram; three, a hexagram.

Descartes views a point as having only two essential characteristics:

  • It is dimensionless.
  • It is just a location in space which can be uniquely represented
    by a single ordered pairorordered triad.

Mandalic geometry rejects both of these axioms. It regards a point, or a particle so represented, as an evanescent entity emerging from interaction of two higher dimensions expressed in our world of three dimensions in such limited manner.

Thiscan be represented in context of Cartesian space but in making mandalic coordinates commensurate with Cartesian coordinates it is no longer possible to represent every “point” in space uniquely with a single mapping of number to location.  What results instead is the probabilistic distribution pattern of the mandala, which we,  from our limited vantage in spacetime, misinterpret as something it is not.

MG is a discrete geometry. The result of the mapping formula used is a mandalic configuration in which the 3-dimensional cube composed of  unit vectors in Cartesian space  becomes a  "probability distribution"  in combined mandalic space.

I have placed the quotation marksaroundprobability distribution because this is a perspective that arises  from our inability to see all that is involved accurately. I suspect this has repercussions pertinent to a full comprehension or grokking of quantum mechanics and possibly of string theory as well.

Since the 64 discrete “points” of  the unit vector hypercube of six dimensions represented by the hexagrams cannot “fit” simultaneously in the 27 discrete points of the 3-dimensional unit vector cube  by any representational method available to our inherited bio-psychocultural mechanism, a sort of time-sharing process occurs in observations and measurements of reality which we interpret in terms of probability.

What has been described here occurs at enormous velocities close to that of light, and likely refers only to processes in the subatomic quantum realm. For MG, which is also a hybridization of mathematics and physics, context is always of the essence.

There is much more to be said in explanation of mandalic geometry. I see, though, this post has already run rather long, so we will end it here. Enough has already been said in way of introduction of basic material.

Notes

[1] Since the coordinate system is describing a cube with an n-hypercube superimposed,  there is an additional constraint placed on all coordinates in
the 6-tuples.  All scalar values must be identical for x, y and z values.  That constraint assures that all vectors though they may differ in sign (direction) maintain equal magnitudes.

When the 6-tuples are dimensionally reduced to 3-tuples by the method I’ve called “compositing of dimension”  the resulting geometric figure consists of four different dimensional amplitudes of 6-tuples collapsed.  The amplitudes of dimension correspond  in spatial terms  to the vertices,  edge centers,  face centers and cube center. The pattern that emerges is that of a mandala. This is a highly symmetric pattern though all symmetries aren’t necessarily apparent immediately, even using Taoist notation. The probability distribution of the 6-tuples allots the hexagrams in the following manner:  one to each vertex;  two to each edge center; four to each face center; one to the cube center. The result is  placement of 64 6-tuples  in 27 positions of discrete 3-tuples  in the specific mandalic distribution pattern described.

Think here of the analogy of a hydrogen atom confined within a cubic space of specified side length determined by the nuclear and atomic force fields. The single electron,  existing in such quantized energy levels that are possible,  can assume various different locations in different orbital shells,  but every location in a given orbital must be equidistant from the nuclear proton. Once reduced by dimensional compositing the 6-tuples described here fill four distinct shells that have different radii or distances from the center.  From center to periphery these distances can be described as zero;  one (or square root one);  square root 2; and square root 3. (Pythagorean theorem)

[2] Schrödinger was not entirely comfortable with the implications of quantum theory. About the probability interpretation of quantum mechanics that came out of Solvay ‘27 he wrote:  "I don’t like it,  and I’m sorry I ever had anything to do with it.“ ["A Quantum Sampler”. The New York Times. 26 December 2005.]

[3] In later years another great physicist, Richard Feynman, would remark, “Where did we get that (equation) from? Nowhere. It is not possible to derive it from anything you know. It came out of the mind of Schrödinger.”

[4] A different approach to avoiding the need for complex numbers from the one I am suggesting is described here. To my mind it offers little of value other than an interesting alternative explanation of what complex numbers are and do. A similar conclusion seems to have been reached by the author.


© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 313-

A Recap of Some Important Ideas Regarding Mandalic Geometry

image


  1. Mandalic geometry (MG) is a new kind of mathematical methodology based on a worldview having roots that predate written history.
  2. It is a discrete geometry which currently consists of just a coordinate system but can be extended as Descartes did his to encompass an entire analytic geometry.
  3. Mandalic geometry introduces and is based on a new number system, the probable number system (or probabilistic number system.)
  4. Just as the complex number system combines real numbers and imaginary numbers and is more robust than either, the probable number system combines real numbers and probable numbers and is more robust than either.
  5. The probable number system is also more robust than the complex number system. Complex numbers combine real numbers with imaginary numbers to form the single complex plane. Composite numbers combine real numbers with probable numbers to form six interdependent composite planes.
  6. Axiomatic to the system is the contention that numbers can exist in different dimensions and therefore can be described as being of some particular dimension. Numbers are always viewed and treated within context of a stated dimension.
  7. Probable numbers are an extension of the real numbers to higher dimensions and are independent of imaginary and complex numbers.
  8. Mandalic geometry does not admit the existence of square root of -1 in the real world other than in mathematics invented by the human mind. In place of square root of negative numbers, MG introduces the new concept of contra-square root. In brief this involves substitution of a combination form of interactive two-dimensional analogues of +1 and -1 for -1 as currently used in imaginary number contexts. This is more fully explained elsewhere in the blog.
  9. Put another way, in place of imaginary numbers MG posits the existence of probable numbers. These can be considered the result of what is essentially wavelike interactions of higher dimensional numbers to form the real numbers we know in the 3-dimensional world.
  10. Higher dimensional numbers can interact with one another through wavelike constructive and destructive interference to generate ordinary
    3-dimensional numbers. Numbers are not viewed as constants to be acted upon as Descartes so views them but rather as being themselves active and changeable. They participate in process. This feature alone enables composite numbers to mediate between mathematics and physics better than either real or complex numbers can.
  11. The interactions of higher dimensional numbers in the process of dimensional compositing to yield 3-dimensional numbers is a function of time and therefore probabilistic from our limited ordinary point of view. From this perspective, certain probablity distributions are the result of dimensional compositing and the consequent mandalic form. MG considers the probabilistic nature of quantum mechanics likely to be based on such.
  12. The probabilistic nature in three dimensions of what are here called probable numbers is what gives rise to the mandalic form which can in a sense be considered the 3-dimensional evolution of 6-dimensional numbers from protean representations through progressive differentiation of form to the stage of maximal differentiation and back again to the undifferentiated state of greatest probability.
  13. The mandalic form has a geometric progression of its line structures in the three Euclidean/Cartesian dimensions such that series of numbers of the form 1:2:1, 2:4:2, and 4:8:4 occur throughout all of those dimensions when a hybrid 6D/3D coordinate system results from performing 2:1 compositing from six to three dimensions.
  14. Mandalic geometry views points and lines in three dimensions as convenient fictions that exist only as evanescent probabilistic concurrences of analogous entities in higher dimensions.
  15. The probabilistic nature of MG makes it ideal for investigations and descriptions of quantum mechanics.
  16. The exclusion of imaginary and complex numbers and substitution of probable and composite numbers which are easily reducible to ordinary algebraic/arithmetic forms and can be worked with using the same methods as those mathematical disciplines makes MG more utilitarian and appropriate to application to quantum mechanics than are complex numbers. All operations performed are based on simple inversion (reflection through a point) and on real numbers, maintaining all the usual rules and properties of ordinary arithmetic, including commutativity (which quaternions fail to preserve.)
  17. MG is currently based on discrete numbers and is concerned mainly with the positive and negative integers. Fractions and irrational numbers are not excluded from the system but do not currently play a significant role. Future incarnations of MG will extend it outward beyond the unit vector cube to tile the geometric universe and inward to encompass fractional entities and fractals.
  18. It is a hybrid geometry resulting from superposition of 6-dimensional numbers and 3-dimensional numbers and is fully commensurate with
    3-dimensional Cartesian geometry.
  19. It describes a linear mapping of two dimensions to one dimension which forms a field of probable numbers over the field of real numbers, analogous to the field of complex numbers but constructed on a different principle and extending to the real numbers in all three Cartesian dimensions rather than just one. The two independent higher dimensions so mapped become dependent variables in the mandalic “line” that results from the compositing of the two. This is expressed, in a sense, as two sine waves 180 degrees out of phase that mutually intersect a common Cartesian axis (x,y or z) at Cartesian +1 and -1 and are maximally separated at Cartesian 0.
  20. This phase difference produces wave interference of both constructive and destructive varieties. So-called “points” or “particles” they represent come into existence only discretely and intermittently at Cartesian -1, +1, and 0, the locations of intersection or confluence (-1 and +1) and maximum separation, the maxima/minima of the two entangled sine waves that occur at Cartesian 0.
  21. As the unit vector cube corresponds to and describes only half of each of the two sine waves, two unit vector cubes are required for a full cycle. Mandalic geometry as currently formulated with a single unit cube then needs to be extended to at least two of these. Extension in both directions of all three Cartesian axes is easily accomplished by repeatedly inverting the current single unit vector cube.
  22. This means that mandalic coordinates alternate positive and negative on both sides of Cartesian 0. The extensions can be continued to infinity in both directions, but not, properly speaking, positive and negative infinity since the manner of extension has created what is essentially a convention-free coordinate system which consists of repeated units of consecutively inverted unit vector cubes in which positive and negative alternate ad infinitum and every Cartesian even-numbered coordinate becomes a “zero equivalent” , or better, a neo-zero in this extended mandalic coordinate system.
  23. The resulting geometry is a dynamic one with “points”, “lines”, and “planes” coming into and passing out of existence intermittently in a time-sharing of corresponding Cartesian entities. It “persists” in time and space by means of continuous creation, destruction and re-creation and is “held together” by “force fields” produced and maintained by means of tensegrity which is based ultimately on dimension and number, and by a process that.might best be described as a “weaving of reality” with warp and woof.
  24. The 2:1 compositing of dimension involved creates a new number system the members of which are like the real integers in all ways except that they map differently to a Cartesian geometric space. Whereas Decartes assumes that one number maps to one point, MG does not make this assumption which is just an unproved axiom that Descartes makes implicit use of.
  25. The method of dimensional compositing automatically results in a mandalic formation having a geometric progression through three Euclidean/Cartesian dimensions from periphery to center (origin).
  26. Currently MG is limited to a description of unit vectors in a composite hybrid 6D/3D geometry but can be extended to include all scalar values and any even number of dimensions.
  27. The notation system used is borrowed from Taoism and foreign to most Western mathematicians. It is, however, basically equivalent to Cartesian coordinate signs (yin=minus; yang=plus); ordered pairs (=bigrams); and ordered triads (=trigrams); and extends these concepts to include ordered quads (=tetragrams) and ordered sextuplets (=hexagrams).
  28. This notation system is used rather than the usual Cartesian notation because it is much easier for the mind to manipulate dimensional numbers using it. It takes only a little practice to become accustomed to using it. Without its use, understanding of mandalic geometry becomes extremely difficult, if not impossible.
  29. As MG views a point as a concurrence of various different dimensions, it interprets Cartesian ordered pairs and triads, and their extensions to higher dimensions, as tensors and treats them as such. This makes it possible to apply operations of addition and multiplication to these mathematical entities in a manner analogous to the way William Rowan Hamilton applied these operations to complex numbers by way of what he called “algebraic couples”.
  30. The probabilistic mandalic form that is the hallmark of MG conveys and necessitates a new interpretation of zero(0). In MG “zero” is not the empty null that it is in Cartesian geometry and Western mathematics generally, but rather a fount of being, so to speak, and a logic gate spanning dimensions. Wherever a zero occurs in Cartesian coordinates two Cartesian-equivalent forms are found in mandalic coordinates. So in the mandalic cube based on unit vectors the twelve edge centers, having a single Cartesian zero, have two Cartesian-equivalent forms (hexagrams); the six face centers, having two Cartesian zeros, have four Cartesian-equivalent forms; and the single cube center, the Cartesian origin point with three zeros, has eight Cartesian-equivalent forms.
  31. Thisalternative zero and the mandalic structure it inhabits force the creation of four different amplitudes of dimension in the 6-dimensional unit vector cube. These are not independent but all mutually dependent and holo-interactive within the composite 6D/3D coordinate system. All of this occurs in a context reminiscent of the one inhabited by nuclear particles. The mapping proposed by MG may in fact model the elementary force fields, electromagnetism and quantum chromodynamics. It suggests a possible mechanism for formation of the state of matter known as a quark-gluon plasma. Hidden within it may even be the secret of quantum gravity.

© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 312-

Beyond the Enlightenment Rationalists:
From imaginary to probable numbers - VI

image

(continued from here)

“O Oysters, come and walk with us!” The Walrus did beseech. “A pleasant walk, a pleasant talk, Along the briny beach: We cannot do with more than four, To give a hand to each.”

* * *

“The time has come,” the Walrus said, “To talk of many things: Of shoes–and ships–and sealing-wax– Of cabbages–and kings– And why the sea is boiling hot– And whether pigs have wings.”

-Lewis Carroll, The Walrus and the Carpenter

image

In this segment, probable numbers will be shown to grow out of a natural context inherently rather than through geometric second thought as transpired  in the history of Western thought  with imaginary numbers and complex plane.  To continue  with development of probable numbers it will be necessary to leave behind,  for the time being,  all preoccupation with imaginary numbers and complex plane.  It will also be necessary  to depart from our comfort zone of Cartesian spatial coordinate axioms and orientation.

Probable coordinates do not negate validity of Cartesian coordinates but they do relegate them to the status of a special case.  In the probable coordinate system the three-dimensional coordinate system of Descartes maps only one eighth of the totality. This means then, that the Cartesian two-dimensional coordinate plane furnishes just one quarter of the total number of  corresponding probable coordinate mappings  projected to a two-dimensional space.[1]  It suggests also that  Cartesian localization  in 2-space or 3-space is just a small part of the whole story regarding actual spatial and temporal locality and their accompanying physical capacities, say for instance of momentum or mass, but actually encompassing a host of other competencies as well.

Although this might seem strange it is a good thing. Why is it a good thing?  First, because nature, as a self-sustaining reality, cannot favor any one coordinate scheme but must encompass all possible - if it is to realize any.  Second,  because both the Schrödinger equationandFeynman path integral approaches to quantum mechanics say it is so.[2]  Third,  because Hilbert space demands it.  This may leave us disoriented and bewildered, but nature revels in this plan of probable planes. Who are we to argue?

So how do we accomplish this feat? Well, basically by reflections in all dimensions and directions. We extend the Cartesian vectors every way possible.  That would give us  a 3 x 3 grid or lattice  of coordinate systems (the original Cartesian system  and  eight new grid elements surrounding it),  but there are only four different types,  so we require only four of the nine to demonstrate. It is best not to show all nine in any case because to do so  would place our Cartesian system at direct center of this geometric probable universe and that would be misleading. Why? Because when we tile the two-dimensional universe to infinity in all directions,  there is no central coordinate system. Any one of the four could be considered at the center, so none actually is. Overall orientation is nondiscriminative.[3]

image

LOOKING GLASS CARTESIAN COORDINATE QUARTET

The image seen immediately above shows four  Looking House Cartesian coordinate systems, correlated within a mandalic plane. This mandalic plane is  one of six faces of a mandalic cube,  each of which  is constructed to a different plan but composed of similar building blocks, the four bigrams in various positions and orientations. A 2-dimensional geometric universe can be tiled with this image,  recursively repeating it in all directions throughout the two dimensions.[4] It should not be very difficult for the reader to determine which of the four mandalic moieties references our particular conventional Cartesian geometric universe.[5]

image

It remains only to be added here and now that potential dimensions, probable planes,  and  probable numbers  arise  immediately and directly from the remarks above. In some ways it’s a little like valence in chemical reactions.  We’ll likely take a look at that combinatory dynamic in context of mandalic geometry at some time down the road.  Next though we want to see how the addition of composite dimension impacts and modifies the basic geometry of the probable plane discussed here.[6]

(to be continued)

Top image: The four quadrants of the Cartesian plane.  These are numbered in the counterclockwise direction by convention. Architectonically, two number lines are placed together, one going left-right and the other going up-down to provide context for the two-dimensional plane.  This image has been modified from one found here.

Notes

[1] To clarify further:  There are eight possible Cartesian-like orientation variants in mandalic space arranged around a single point at which they are all tangent to one another. If we consider just the planar aspects of mandalic space,  there are  four possible Cartesian-like orientation variants  which are organized about a central shared point in a manner similar to how quadrants are symmetrically arranged  about the Cartesian origin point (0,0) in ordinary 2D space. But here the center point determining symmetries is always one of the points showing greatest rather than least differentiation. That is to say it is formed by Cartesian vertices, ordered pairs having all 1s, no zeros.  That may have confused more than clarified, but it seemed important to say.  We will be expanding on these thoughts in posts to come. Don’t despair. For just now the important takeaway is that the mandalic coordinate system combines two very important elements that optimize it for quantum application:  it manages to be both probabilistic and convention-free  (in terms of spatial orientation,  which surely must relate to quantum states and numbers in some as yet undetermined manner.) At the same time, imaginary numbers and complex plane are neither.

[2] Even if physics doesn’t yet (circa 2016) realize this to be true.

[3] It is an easy enough matter to extrapolate this mentally to encompass the Cartesian three-dimensional coordinate system but somewhat difficult to demonstrate in two dimensions.  So we’ll persevere with a two-dimensional exposition for the time being. It only needs to be clarified here that the three-dimensional realization involves a 3 x 3 x 3 grid but requires just eight cubes to demonstrate because there are only eight different coordinate system types.

[4] I am speaking here in terms of ordinary dimensions but it should be understood that the reality is that the mandalic plane is a composite 4D/2D geometric structure, and the mandalic cube is a composite 6D/3D structure. The image seen here does not fully clarify that because it does not yet take into account composite dimension nor place the bigrams in holistic context within tetragrams and hexagrams.  All that is still to come.  Greater context will make clear how composite dimension works and why it makes eminent good sense for a self-organizing universe to invoke it. Hint: it has to do with quantum interference phenomena and is what makes all process possible.

ADDENDUM (12 APRIL, 2016)
The mandalic plane I am referring to here corresponds to the Cartesian 2-dimensional plane and is based on four extraordinary dimensions that are composited to the ordinary two dimensions, hence hybrid 4D/2D. It should be understood though that any number of extra dimensions could potentially be composited to two or three ordinary dimensions. The probable plane described in this post is not such a mandalic plane as no compositing of dimensions has yet been performed. What is illustrated here is an ordinary 2-dimensional plane that has undergone reflections in x- and y-dimensions of first and second order to form a noncomposited probable plane. The distinction is an important one.

[5] This is perhaps a good place to mention that the six  planar faces  of the mandalic cube fit together seamlessly in 3-space,  all mediated by the common shared central point, in Cartesian terms the origin at ordered triad (0.0.0) where eight hexagrams coexist in mandalic space. Moreover the six planes fit together mutually by means of a nuclear particle-and-force equivalent of the mortise and tenon joint but in six dimensions rather than two or three, and both positive and negative directions for each.

[6] It should also be avowed that tessellation of a geometric universe with a nondiscriminative, convention-free coordinate system need not exclude use of Cartesian coordinates entirely in all contextual usages.  Where useful they can still be applied in combination with mandalic coordinates since the two can be made commensurate,  irrespective of  specific Cartesian coordinate orientation locally operative. Whatever the Cartesian orientation might be it can always be overlaid with our conventional version of the same. More concretely, hexagram Lines can be annotated with an ordinal numerical subscript specifying Cartesian location in terms of our  local convention  should it prove necessary or desirable to do so for whatever reason.

On the other hand,  before prematurely throwing out the baby with the bath water, we might do well to ask ourselves whether these strange juxtapositions of coordinates might not in fact encode the long sought-after hidden variables that could transform quantum mechanics into a complete theory.  In mandalic coordinates of the reflexive nature described, these so-called hidden variables could be hiding in plain sight.  Were that to prove the case,  David Bohm andLouis de Broglie  would be  immediately and hugely vindicated  in advancing their  pilot-wave theory of quantum mechanics.  We could finally consign the Copenhagen Interpretation to the scrapheap where it belongs,  along with both imaginary numbers and the complex plane.

ADDENDUM (24 APRIL, 2016)
Since writing this I’ve learned
that de Broglie disavowed Bohm’s pilot wave theory upon learning of it in 1952. Bohm had derived his interpretation of QM from de Broglie’s original interpretation but de Broglie himself subsequently converted to Niels Bohr’s prevailing Copenhagen interpretation.

© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 311-

Beyond the Enlightenment Rationalists:
From imaginary to probable numbers - V

image

(continued from here)

The four Cartesian quadrants provide the two-dimensional analogue of the number line and its graphic representation in Cartesian coordinate space.  This is the true native habitat of the square and, by implication, of square root.  Because  Enlightenment mathematicians  found fit to define square root in a different context inadvertently  -that of the number line- we will find it necessary to devise a different name for what ought rightly to have been called square root,  but wasn’t.  I propose that we retain the existent definition of tradition and refer to the new relationship between opposite numbers in the square,  that is to say,  opposite vertices through two dimensions or antipodal numbers, as contra-square root.[1]

image

Modified from image found here.

Given this fresh context - one of greater dimension than the number line - it soon becomes clear with little effort that a unit number[2]ofany dimension multiplied by itself gives as result the identity element of that express dimension. For the native two-dimensional context of the square the identity element is OLD YANG,  the bigram composed of two stacked yang (+) Lines,  which corresponds to yang (+1),  the identity element in the  one-dimensional context  of the number line. In a three-dimensional context,  the identity element is the trigram HEAVEN which is composed of three stacked yang (+) Lines.  The crucial idea here is that the identity element differs for each dimensional context,  and whatever that context might be,  it produces no change when in the operation of multiplication it acts as operator on any operand within the stated dimension.[3]

As a corollary it can be stated that any number in any dimension n composed of  any combination  of  yang Lines (+1) and yin Lines (-1) if multiplied by itself (i.e., squared) produces the identity element for that dimension.  In concrete terms this means, for example, that any bigram multiplied by itself equals the bigram OLD YANG; any of eight trigrams multiplied by itself  equals the trigram HEAVEN;  and  any of the sixty-four hexagrams multiplied by itself  equals the hexagram HEAVEN; etc. (valid for any and all dimensions without exception). Consequently, the number of roots the identity element has in any dimension n is equal to the number 2n, these all being real roots in that particular dimension.

Similar contextual analysis would show that the inversion element of any dimension n  has  2n roots of the kind we have agreed to refer to as contra-square roots in deference to the Mathematics Establishment.[4]

That leads us to the possibly startling conclusion that in every dimension n  there is an  inversion element  that has the same number of roots as the identity elementandall of them are real roots.  For two dimensions the two pairs that satisfy the requirement are bigram pairs

image

For one dimension there is only a single pair that satisfies. That is (surprise, surprise)  yin(-1)/yang (+1).  What it comes down to is
this:

If we are going to continue to insist on referring to square root
in terms of the one-dimensional number line
, then

  • +1 has two real roots of the traditional variety, +1 and -1
  • -1 has two real roots of the newly defined contra variety,
    +1/-1 and -1/+1

So where do imaginary numbers and quaternions fit in all this? The short answer is they don’t.  Imaginary numbers entered the annals of human thought through error.  There was a pivotal moment[5]  in the history of mathematics and science, an opportunity to see that there are in every dimension two different kinds of roots - - - what has been called square root and what we are calling contra-square roots.  Enlightenment mathematicians and philosophers  essentially allowed the opportunity to slip through their fingers unnoticed.[6]

Descartes at least saw through the veil.  He called the whole matter of imaginary numbers ‘preposterous’.  It seems his venerable opinion was overruled though. Isaac Newton had his say in the matter too. He claimed that roots of imaginary numbers “had to occur in pairs.” And yet another great mathematician, philosopher opined.  Gottfried Wilhelm Leibniz,  in 1702 characterized √−1 as  “that amphibian between being and non-being which we call the imaginary root of negative unity.” Had he but preserved such augury conspicuously in mind he might have elaborated the concept of probable numbers in the 18th century.  If only he had truly understood the I Ching,  instead of dismissing it as a primitive articulation of his own binary number system.

(continuedhere)

Image: The four quadrants of the Cartesian plane. By convention the quadrants are numbered in a counterclockwise direction.  It is as though two number lines were placed together, one going left-right, and the other going up-down to provide context for the two-dimensional plane. Sourced from Math Is Fun.

Notes

[1] My preference might be for square root to be redefined from the bottom up, but I don’t see that happening in our lifetimes. Then too this way could be better.

[2] By the term unit number,  I intend any number of a given dimension that consists entirely of variant elements of the number one (1) in either its positive or negative manifestation.  Stated differently,  these are vectors having various different directions within the dimension,  but all of scalar value -1 (yin) or +1 (yang). All emblems of I Ching symbolic logic satisfy this requirement. These include the Line, bigram, trigram, tetragram, and hexagram.  In any dimension n there exist 2n such emblems.  In sum, for our purposes here, a unit number is any of the set of numbers, within any dimension n, which when self-multiplied (squared) produces the multiplicative identity of that dimension which is itself, of course, a member of the set.

ADDENDUM (01 MAY 2016): I’ve since learned that mathematics has a much simpler way of describing this. It calls all these unit vectors. Simple, yes?

[3] I think it fair to presume that this might well have physical correlates in terms of quantum mechanical states or numbers. Here’s a thought: why would it be necessary that all subatomic particles exist in the same dimension at all times given that they have a playing field of multiple dimensions, - some of them near certainly beyond the three with which we are familiar? And why would it not be possible for two different particles to be stable and unchanging in their different dimensions,  yet become reactive and interact with one another when both enter the same dimension or same amplitude of dimension?

[4] Since in any contra-pair (antipodal opposites) of any dimension, either member of the pair must be regarded  once as operator  and  once as operand. So for the two-dimensional square, for example, there are two antipodal pairs (diagonals) and either vertex of each can be either operator or operand.  So in this case, 2 x 2 = 4.  For trigrams there are four antipodal pairs, and 2 x 4 = 8. For hexagrams there are thirty-two antipodal pairs and 2 x 32 = 64. In general, for any dimension n there are 2 x 2n/2 = 2n antipodal pairs or contra-roots.

[5] Actually lasting several centuries, from about the 16th to the 19th century. Long enough,  assuredly,  for the error  to have been  discovered and corrected. Instead,  the 20th century dawned with error still in place,  and physicists eager to explain the newly discovered bewildering quantum phenomena compounded the error  by latching onto  √−1 and quaternions  to assuage their confusion and discomfiture.  This probably took place in the early days of quantum mechanics when the Bohr model of the atom still featured electrons as traveling in circular orbits around the nucleus or soon thereafter, visions of minuscule solar systems still fresh in the mind. At that time rotations detailed by imaginary numbers and quaternions may have still made some sense. Such are the vagaries of history.

[6] I think an important point to consider is that imaginary and complex numbers were, -to mathematicians and physicists alike,- new toys of a sort that  enabled them  to  accomplish certain things  they could not otherwise. They were basically tools of empowerment which allowed manipulation of numbers and points on a graph more easily or conveniently.  They provided
their controllers a longed for power over symbols, if not over the real world itself. In the modern world ever more of what we humans do and want to do involves manipulation of symbols. Herein,  I think,  lies the rationale for our continued fascination with and dependence on these tools of the trade. They don’t need to actually apply to the world of nature,  the noumenal world,  so long as they satisfy human desire for domination  over the world of symbols it has created for itself and in which it increasingly dwells, to a considerable degree apart from the natural world’s sometimes seemingly too harsh laws.


© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 310-

Beyond the Enlightenment Rationalists:
From imaginary to probable numbers - IV

image

(continued from here)

One of the notable things the Rationalists  failed to take into account in their analysis and codification of square roots  was  the significance of context. In so doing they assured that all related concepts they developed would eventually degenerate into a series of errors of conflation.  Do  not ever underestimate the importance of context.

Mathematicians, for example, can show that for any 3-dimensional cube  there exists  a  2-dimensional square,  the area of which equals the volume of the cube.[1] And although that is true, something has been lost in translation. This is another of the sleights of hand mathematicians are so fond of.  Physicists cannot afford to participate in such parlor tricks as these, however mathematically true they might be.[2]

We will begin now, then, to examine how the mandalic coordinate approach stacks up against that of imaginary numbers and quaternions. The former are holistic and respective of the natural order; the latter are irresponsibly rational, simplistic and, in final analysis, wrong about how nature works.[3] Ambitious endeavor indeed, but let’s give it a go.

We’ve already looked at how the standard geometric interpretation of imaginary numbers in context of the complex plane is based on rotations through continuous Euclidean space.  You can brush up on that aspect of the story here if necessary. The mandalic approach to mapping of space is more complicated and far more interesting.  It involves multidimensional placement of elements in a discrete space, which is to say a discontinuous space,  but one fully commensurate with both Euclidean and Cartesian 3-dimensional space. The holo-interactive manner in which these elements relate to one another leads to a  probabilistic mathematical design  which preserves commutative multiplication,  unlike quaternions which forsake it.

Transformations between these elements are based on inversion (reflection through a point) rather than rotation which cannot in any case reasonably apply to discrete spaces.  The spaces that quantum mechanics inhabits are decidedly discrete.  They cannot be accurately detailed using imaginary and complex numbers or quaternions.  To discern the various, myriad transitions which can occur among mandalic coordinates requires some patience. I think it cannot be accomplished overnight but at least in the post next up we can make a start.[4]

(continuedhere)

Image: A drawing of the first four dimensions. On the left is zero dimensions (a point) and on the right is four dimensions  (A tesseract).  There is an axis and labels on the right and which level of dimensions it is on the bottom. The arrows alongside the shapes indicate the direction of extrusion. By NerdBoy1392 (Own work) [CC BY-SA 3.0orGFDL],via Wikimedia Commons

Notes

[1] If only in terms of scalar magnitude. Lost in translation are all the details relating to vectors and dimensions in the original.  Conflation does not itself in every case involve what might be termed ‘error’ but because it always involves loss or distortion of information,  it is nearly always guaranteed to eventuate in error somewhere down the line of argument. The point of all this in our context here is that, in the history of mathematics, something of this sort occurred when the Rationalists of the Enlightenment invented imaginary and complex numbers and again when quaternions were invented in 1843. These involved a disruption of vectors and dimensions as treated by nature. The loss of information involved goes a long way in explaining why no one has been able to explain whyandhow quantum mechanics works in a century or more.  These  misconstrued theses  of mathematics behave like a demon or ghost in the machine that misdirects,  albeit unintentionally, all related thought processes.  What we end up with is a plethora of confusion. The fault is not in quantum mechanics but in ourselves, that we are such unrelentingly rational creatures, that so persistently pursue an unsound path that leads to reiterative error.

[2] Because physicists actually care about the real world; mathematicians, not so much.

[3] It must be admitted though that it was not the mathematicians who ever claimed imaginary numbers had anything to do with nature and the real world. Why would they? Reality is not their concern or interest. No, it was physicists themselves who made the mistake. The lesson to be learned by physicists here I expect is to be careful whose petticoat they latch onto. Not all are fabricated substantially enough to sustain their thoughts about reality, though deceptively appearing to do just that for protracted periods of time.

[4] My apologies for not continuing with this here as originally intended. To do so would make this post too long and complicated. Not that transformations among mandalic coordinates are difficult to understand,  just that they are very convoluted. This is not a one-point-encodes-one-resident-number plan like that of Descartes we’re talking about here. This is mandala country.


© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 309-

Beyond the Enlightenment Rationalists:
From imaginary to probable numbers - III

image

(continued from here)

My objection to the imaginary dimension is not that we cannot see it.  Our senses cannot identify probable dimensions either, at least not in the visually compelling manner they can the three Cartesian dimensions. The question here is not whether imaginary numbers are mathematically true. How could they not be? The cards were stacked in their favor. They were defined in such a manner, – consistently and based on axioms long accepted valid, – that they are necessarily mathematically true. There’s a word for that sort of thing. –The word is  tautological.– No,  the decisive question is whether imaginary numbers apply to the real world; whether they are scientifically true, and whether physicists can truly rely on them to give empirically verifiable results with maps that accurately reproduce mechanisms actually used in nature.[1]

The geometric interpretation of imaginary numbers was established as a belief system using the Cartesian line extending from  -1,0,0  through the origin  0,0,0 to 1,0,0  as the sole real axis left standing in the complex plane. In 1843,  William Rowan Hamilton introduced two additional axes in a quaternion coordinate system.  The new jandk axes,  similar to the i axis, encode coordinates of imaginary dimensions.  So the complex plane has one real axis, one imaginary; the quaternion system, three imaginary axes, one real, to accomplish which though involved loss of commutative multiplication. The mandalic coordinate system has three real axes upon which are superimposed six probable axes. It is both fully commensurate with the Cartesian system of real numbers  and  fully commutative for all operations throughout all dimensions as well.[2]

All of these coordinate systems have a central origin point which all other points use as a locus of reference to allow clarity and consistency in determination of location.  The  mandalic coordinate system  is unique in that this point of origin is not a  null point of emptiness as in all the other locative systems,  but  a point of effulgence.  In that location  where occur Descartes’ triple zero triad (0.0.0) and the complex plane’s real zero plus imaginary zero (ax=0,bi=0), we find eight related hexagrams, all having neutral charge density,  each of these consisting of  inverse trigrams  with corresponding Lines of opposite charge, canceling one another out. These eight hexagrams are the only hexagrams out of sixty-four total possessing both of these characteristics.[3]

image

So let’s begin now to plot the points of the mandalic coordinate system with  the view  of comparing its  dimensions and points  with  those of the complex plane.[4]  The eight  centrally located hexagrams  all refer to  and are commensurate with the Cartesian triad (0,0,0). In a sense they can be considered eight  alternative possible states  which can  exist in this locale at different times. These are hybrid forms of the four complementary pair of hexagrams found at antipodal vertices of the mandalic cube.  The eight vertex hexagrams are those with upper and lower trigrams identical. This can occur nowhere else in the mandalic cube because there are only eight trigrams.[5]

image

From the origin multiple probability waves of dimension radiate out toward the  central points of the faces of the cube,  where these divergent force fields rendezvous and interact with reciprocal forces returning from the eight vertices at the periphery. converging toward the origin.  Each of these points at the six face centers  are  common intersections  of another eight particulate states or force fields analogous to the origin point except that four originate within this basic mandalic module and four without in an adjacent tangential module. Each of the six face centers then is host to four internal resident hexagrams which  share the point in some manner, time-sharing or other. The end result is the same regardless, probabilistic expression of  characteristic form and function.  There is a possibility that this distribution of points and vectors  could be or give rise to a geometric interpretation of the Schrödinger equation,  the fundamental equation of physics for describing quantum mechanical behavior. Okay, that’s clearly a wild claim, but in the event you were dozing off you should now be fully awake and paying attention.

The vectors connecting centers of opposite faces of an ordinary cube through the cube center or origin of the Cartesian coordinate system are at 180° to each other forming the three axes of the system corresponding to the number of dimensions.  The mandalic cube has 24 such axes, eight of which accompany each Cartesian axis thereby shaping a hybrid 6D/3D coordinate system. Each face center then hosts internally four hexagrams formed by  hybridization of trigrams  in  opposite vertices  of diagonals of that cube face,  taking one trigram  (upper or lower)  from one vertex and the other trigram (lower or upper) from the other vertex. This means that a face of the mandalic cube has eight diagonals, all intersecting at the face center, whereas a face of the ordinary cube has only two.[6]

image

The circle in the center of this figure is intended to indicate that the two pairs of antipodal hexagrams at this central point of the cube face rotate through 90° four times consecutively to complete a 360° revolution. But I am describing the situation here in terms of revolution only to show an analogy to imaginary numbers.  The actual mechanisms involved can be better characterized as inversions (reflections through a point),  and the bottom line here is that for each diagonal of a square, the corresponding mandalic square has  a possibility of 4 diagonals;  for each diagonal of a cube,  the corresponding mandalic cube has a possibility of 8 diagonals. For computer science, such a multiplicity of possibilities offers a greater number of logic gates in the same computing space and the prospect of achieving quantum computing sooner than would be otherwise likely.[7]

Similarly, the twelve edge centers of the ordinary cube host a single Cartesian point,  but the superposed mandalic cube hosts two hexagrams at the same point. These two hexagrams are always inverse hybrids of the two vertex hexagrams of the particular edge.  For example,  the edge with vertices  WIND over WIND  and  HEAVEN over HEAVEN  has as the two hybrid hexagrams  at the  center point  of the edge  WIND over HEAVEN  and HEAVEN over WIND. Since the two vertices of concern here connect with one another  via  the horizontal x-dimension,  the two hybrids  differ from the parents and one another only in Lines 1 and 4 which correspond to this dimension.  The other four Lines encode the y- amd z-dimensions, therefore remain unchanged during all transformations undergone in the case illustrated here.[8]

image

This post began as a description of the structure of the mandalic coordinate system and how it differs from those of the complex plane and quaternions.  In the composition,  it became also  a passable introduction to the method of  composite dimension.  Additional references to the way composite dimension works  can be found scattered throughout this blog and Hexagramium Organum.  Basically the resulting construction can be thought of as a  tensegrity structure,  the integrity of which is maintained by opposing forces in equilibrium throughout, which operate continually and never fail,  a feat only nature is capable of.  We are though permitted to map the process  if we can manage to get past our obsession with  and addiction to the imaginary and complex numbers and quaternions.[9]

In our next session we’ll flesh out probable dimension a bit more with some illustrative examples. And possibly try putting some lipstick on that PIG (Presumably Imaginary Garbage) to see if it helps any.

(continuedhere)

Image: A drawing of the first four dimensions. On the left is zero dimensions (a point) and on the right is four dimensions  (A tesseract).  There is an axis and labels on the right and which level of dimensions it is on the bottom. The arrows alongside the shapes indicate the direction of extrusion. By NerdBoy1392 (Own work) [CC BY-SA 3.0orGFDL],via Wikimedia Commons

Notes

[1] For more on this theme,  regarding quaternions,  see Footnote [1]  here. My own view is that imaginary numbers, complex plane and quaternions are artificial devices, invented by rational man, and not found in nature.  Though having limited practical use in  representation of rotations  in  ordinary space they have no legitimate application to quantum spaces,  nor do they have any substantive or requisite relation to square root, beyond their fortuitous origin in the Rationalists’ dissection and codification of square root historically, but that part of the saga was thoroughly misguided.   We wuz bamboozled.  Why persist in this folly? Look carefully without preconception and you’ll see this emperor’s finery is wanting. It is not imperative to use imaginary numbers to represent rotation in a plane. There are other, better ways to achieve the same. One would be to use sin and cos functions of trigonometry which periodically repeat every 360°.  (Read more about trigonometric functions here.)  Another approach would be to use polar coordinates.

image

[SOURCE]

A quaternion, on the other hand,  is a four-element vector composed of a single real element and three complex elements. It can be used to encode any rotation in a  3D coordinate system.  There are other ways to accomplish the same, but the quaternion approach offers some advantages over these.  For our purposes here what needs to be understood is that mandalic coordinates encode a hybrid 6D/3D discretized space. Quaternions are applicable only to continuous three-dimensional space.  Ultimately,  the two reside in different worlds and can’t be validly compared. The important point here is that each has its own appropriate domain of judicious application. Quaternions can be usefully and appropriately applied to rotations in ordinary three-dimensional space, but not to locations or changes of location in quantum space.  For description of such discrete spaces, mandalic coordinates are more appropriate, and their mechanism of action isn’t rotation but inversion (reflection through a point.) Only we’re not speaking here about inversion in Euclidean space, which is continuous, but in discrete space, a kind of quasi-Boolean space,  a higher-dimensional digital space  (grid or lattice space). In the case of an electron this would involve an instantaneous jump from one electron orbital to another.

[2] I think another laudatory feature of mandalic coordinates is the fact that they are based on a thought system that originated in human prehistory, the logic of the primal I Ching. The earliest strata of this monumental work are actually a compendium of combinatorics and a treatise on transformations,  unrivaled until modern times, one of the greatest intellectual achievements of humankind of any Age.  Yet its true significance is overlooked by most scholars, sinologists among them.  One of the very few intellectuals in the West who knew its true worth and spoke openly to the fact, likely at no small risk to his professional standing, was Carl Jung, the great 20th century psychologist and philosopher.

It is of relevance to note here that all the coordinate systems mentioned are, significantly,  belief systems of a sort.  The mandalic coordinate system  goes beyond the others though,  in that it is based on a still more extensive thought system, as the primal I Ching encompasses an entire cultural worldview.  The question of which,  if any,  of these coordinate systems actually applies to the natural order is one for science, particularly physics and chemistry, to resolve.

Meanwhile, it should be noted that neither the complex plane nor quaternions refer to any dimensions beyond the ordinary three, at least not in the manner of their current common usage.  They are simply alternative ways of viewing and manipulating the two- and three-dimensions described by Euclid and Descartes. In this sense they are little different from  polar coordinatesortrigonometry  in what they are attempting to depict.  Yes, quaternions apply to three dimensions, while polar coordinates and trigonometry deal with only two.  But then there is the method of  Euler angles  which describes orientation of a rigid body in three dimensions and can substitute for quaternions in practical applications.

A mandalic coordinate system, on the other hand, uniquely introduces entirely new features in its composite potential dimensions and probable numbers which I think have not been encountered heretofore. These innovations do in fact bring with them  true extra dimensions beyond the customary three  and also the novel concept of dimensional amplitudes.  Of additional importance is the fact that the mandalic method relates not to rotation of rigid bodies,  but to interchangeability and holomalleability of parts  by means of inversions through all the dimensions encompassed, a feature likely to make it useful for explorations and descriptions of particle interactions of quantum mechanics.  Because the six extra dimensions of mandalic geometry may, in some manner, relate to the six extra dimensions of the 6-dimensional Calabi–Yau manifold, mandalic geometry might equally be of value in string theoryandsuperstring theory.

Itis possible to use mandalic coordinates to describe rotations of rigid bodies in three dimensions,  certainly,  as inversions can mimic rotations, but this is not their most appropriate usage. It is overkill of a sort. They are capable of so much more and this particular use is a degenerate one in the larger scheme of things.

[3] This can be likened to a quark/gluon soup.  It is a unique and very special state of affairs that occurs here. Physicists take note. Don’t let any small-minded pure mathematicians  dissuade you from the truth.  They will likely write all this off as “sacred geometry.” Which it is, of course, but also much more.  Hexagram superpositions  and  stepwise dimensional transitions  of the mandalic coordinate system could hold critical clues  to  quantum entanglement and quantum gravity. My apologies to those mathematicians able to see beyond the tip of their noses. I was not at all referring to you here.

[4] Hopefully also with dimensions and points of the quaternion coordinate system once I understand the concepts involved better than I do currently. It should meanwhile be underscored that full comprehension of quaternions is not required to be able to identify some of their more glaring inadequacies.

[5] In speaking of  "existing at the same locale at different times"  I need to remind the reader and myself as well that we are talking here about  particles or other subatomic entities that are moving at or near the speed of light,- - -so very fast indeed. If we possessed an instrument that allowed us direct observation of these events,  our biologic visual equipment  would not permit us to distinguish the various changes taking place. Remember that thirty frames a second of film produces  the illusion of motion.  Now consider what  thirty thousand frames  a second  of  repetitive action  would do.  I think it would produce  the illusion of continuity or standing still with no changes apparent to our antediluvian senses.

[6] Each antipodal pair has four different possible ways of traversing the face center.  Similarly,  the mandalic cube has  thirty-two diagonals  because there are eight alternative paths by which an antipodal pair might traverse the cube center. This just begins to hint at the tremendous number of  transformational paths  the mandalic cube is able to represent, and it also explains why I refer to dimensions involved as  potentialorprobable dimensions  and planes so formed as probable planes.  All of this is related to quantum field theory (QFT), but that is a topic of considerable complexity which we will reserve for another day.

[7] One advantageous way of looking at this is to see that the probabilistic nature of the mandalic coordinate system in a sense exchanges bits for qubits and super-qubits through creation of different levels of logic gates that I have referred to elsewhere as different amplitudes of dimension.

[8] Recall that the Lines of a hexagram are numbered 1 to 6, bottom to top. Lines 1 and 4 correspond to, and together encode, the Cartesian x-dimension. When both are yang (+),  application of the method of  composite dimension results in the Cartesian value  +1;  when both yin (-),  the Cartesian value  -1. When either Line 1 or Line 4 is yang (+) but not both (Boole’s exclusive OR) the result is one of two possible  zero formations  by destructive interference. Both of these correspond to (and either encodes) the single Cartesian zero (0). Similarly hexagram Lines 2 and 5 correspond to and encode the Cartesian y-dimension; Lines 3 ane 6, the Cartesian z-dimension. This outline includes all 9 dimensions of the hybrid  6D/3D coordinate system:  3 real dimensions and the 6 corresponding probable dimensions. No imaginary dimensions are used; no complex plane; no quaternions. And no rotations. This coordinate system is based entirely on inversion (reflection through a point)  and on constructive or destructive interference. Those are the two principal mechanisms of composite dimension.

[9] The process as mapped here is an ideal one.  In the real world errors do occur from time to time. Such errors are an essential and necessary aspect of evolutionary process. Without error, no change. And by implication, likely no continuity for long either, due to external damaging and incapacitating factors that a natural world devoid of error never learned to overcome.  Errors are the stepping stones of evolution, of both biological and physical varieties.


© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 308-

Beyond the Enlightenment Rationalists:
From imaginary to probable numbers - II

image

(continued from here)

When a geometric interpretation of imaginary numbers was at last proposed,  long after they were invented,  it was as though accomplished by central committee. The upshot was easily enough understood but also simplistic. In broad brushstroke here is what seems to have gone down.

The 3 dimensions of Descartes’ coordinate system-a number already deficient from the perspective of mandalic geometry-were reduced to just one.  Of the real number axes then  only the x-axis remained.  This meant from the get-go  that  any  geometric figure that ensued  could encompass only linearity in terms of real numbers and dimensions.  It was applicable only to a line segment,  so the complex plane that resulted  could describe just one real dimension and one imaginary dimension.  It consecrated the number line in a single dimension, to exclusion of its proper habitation in two others besides. Strike one for imaginary numbers.[1]

With that as background let’s look now at the rotations described by this geometric interpretation of imaginary numbers in the context of the complex plane.

image

i in the complex or cartesian plane. Real numbers lie on the horizontal axis, and imaginary numbers lie on the vertical axis By Loadmaster (David R. Tribble) (Own work) [CC BY-SA 3.0orGFDL],via Wikimedia Commons

The number 1 is the multiplicative identity element for real numbers and the number -1  is the  reflection inversion element  for real numbers.  Put another way, the number one times any number equals that number;  the number -1 times any number is  a negative of that number  or  the inverse number through a reference point, usually taken as zero. Multiplying by 1 then leaves 1, -1, i and -i all unchanged. Multiplying by -1  changes  -1 to 1, 1 to -1, i to -i, and -i to i.  In terms of rotations in the complex plane, these changes  all involve a rotation through 180 degrees.  Multiplication of the number 1 by i changes it to i; i by i changes it to -1; -1 by i to -i; and -i by i to 1.  These changes all involve rotations through 90 degrees.  And finally, multiplication of 1 by -i changes it to -i; -i by -i changes it to -1; -1 by -i to i; and i by -i to 1: all changes involving rotations through -90 degrees.

The figure below shows another way to interpret these rotations that amounts to the same tbing: i1 = i; i2 =-1; i3 = -i; i4 = 1.  Click to enlarge.

image

Four numbers on the real line multiplied by integer powers of the imaginary unit, which corresponds to rotations by multiples of the right angle. By Keφr [CC0],via Wikimedia Commons

I think a committee of some sort must have come up with this resplendent plan. For certain it was an Academy of Mathematics and Sciences that endorsed and enthroned it. All bow to central authority.

I had planned to include a comparison of imaginary numbers and probable numbers in this post as well but because that is a long discussion itself, it will have to wait till the next post.  I might add it should prove well worth the wait.

(continuedhere)

Image: A drawing of the first four dimensions. On the left is zero dimensions (a point) and on the right is four dimensions  (A tesseract).  There is an axis and labels on the right and which level of dimensions it is on the bottom. The arrows alongside the shapes indicate the direction of extrusion. By NerdBoy1392 (Own work) [CC BY-SA 3.0orGFDL],via Wikimedia Commons

Notes

[1] Mathematician William Rowan Hamilton  subsequently addressed this deficiency in 1843 with his  quaternions,  a  number system  that  extends the complex numbers to three-dimensional space.  Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space  or,  in other words, as the quotient of two vectors.  This complicated matters even more by introducing a non-commutative multiplication operation to the system, though to be fair the quaternion coordinate system has found some useful applications mainly for calculations involving 3-dimensional rotations,  as in 3-dimensional computer graphics,computer vision, and crystallographic texture analysis. Still it becomes problematic when theoretical physics attempts use of quaternions in calculations pertaining to  atomic and subatomic spaces  where rotations do not actually take place.  The conclusion to be drawn here is that quaternions can be usefully,  if somewhat clumsily,  applied to 3-dimensional macro-spaces but are inapproriate for accurate description of higher dimensional spaces. What is here unfortunate and misleading  is that quaternions apparently do describe outcomes of events in the quantum realm to some partial degree,  if not the mechanisms of the events themselves.  Physicists would not long tolerate them were that not so.

[ADDENDUM (24 APRIL, 2016)
Since writing this I’ve learned
that quaternions are not currently used in quantum physics nor were they ever, to any great degree, in the past.]

In other words, sometimes  the right answer  can be reached by a wrong method. In the case under discussion here, we should note that it is possible for a rotation to mimic inversion (reflection through a point). A 90° rotation in two dimensions can mimic a single inversion in a single plane through an edge of a square, and a 180° rotation in two dimensions can mimic a single inversion through a diagonal of a square  or  two successive inversions  through  two perpendicular edges of a square.  A 180° rotation in three dimensions  can mimic three inversions through three mutually perpendicular edges of a square;  a combination of  one inversion through a diagonal of a square  and another through an edge perpendicular to the plane of the first inversion;  or a single inversion through a diagonal of the cube. Subatomic paricles exist as discrete or quantized entities and would follow such methods of transformation rather than rotations through a continuous space.  Of course, transformations involving a diagonal would require more transformative energy than one involving a single edge.

Such patterns of relationship and transformation could no doubt be described in terms of quantum states and quantum numbers without too much difficulty by a knowledgeable theoretical physicist.  Surely doing so could be no more difficult than using quaternions,  which may give a correct answer while also misleading and limiting knowledge of the the true workings of the quantum realm by using an incorrect mechanism, one non-commutative to boot. Nature doesn’t approve of hat tricks like that.


© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 307-

Beyond the Enlightenment Rationalists:
From imaginary to probable numbers - I

image

Imaginary numbers arose in the history of mathematics as a result of misunderstanding the dimensional character of numbers.  There was a failure to acknowledge that numbers exist in a context of dimension. This has earlier been addressed at length.[1]  Simply put, numbers exist always in a particular dimensional context.  Square numbers pertain to a context of two dimensions and therefore to a plane,  not a line.  Square roots then ought justly reference a two-dimensional geometrical context rather than the linear one mathematics has maintained ever since mathematicians of the Age of Enlightenment decreed it so.  Square roots contrary to the way mathematics would have it can neither exist in nor be found in any single line segment,  because they do not originate in the number line but in the two-dimensional square.

Algebra, not geometry, provided the breeding ground for imaginary numbers.  They were given a geometric interpretation as an afterthought only, long after the fact of their invention. Rationalist algebraists, feeling compelled to give meaning to equations of the form b2 = -4 came up with the fantastic notion of imaginary numbers. Only indirectly did these grow out of nature, by way of minds of men obsessed with reason.[2]

Descartes knew of the recently introduced square roots of negative numbers. He thought them preposterous and was first to refer to the new numbers by the mocking name imaginary, a label which stuck and which continues to inform posterity of the exact manner in which he viewed the oddities.  It is one of the ironies of history that when at last a geometrical interpretation of square root of negative numbers was offered it involved swallowing up Descartes’ own y-axis. Poetic justice? Or ultimate folly?

Had the essential dimensional nature of numbers been recognized there would have been no need to inquire what the square root of -1 was. It would have been clear that there was no square root of -1 nor any need for such as +1 also has no square root.  As linear numbers,  neither -1 nor +1 can legitimately be said to have a square root.  Both, though, have two-dimensional analogues and these do have square roots, not recognized as such unfortunately by the mathematics hegemony.[3]

In the next post we will look at a comparison between imaginary numbers,  which were formulated in accordance with this misconstrual about how numbers relate to dimensions,  and probable numbers which grow organically out of a consideration of how numbers and dimensions actually relate to one another in nature.[4]  The first of these approaches can be thought of as rational planning by a central authority; the second, as the holistic manner in which nature attends to everything, all at once, and without rational forethought.

(continuedhere)

Image: A drawing of the first four dimensions. On the left is zero dimensions (a point) and on the right is four dimensions  (A tesseract).  There is an axis and labels on the right and which level of dimensions it is on the bottom. The arrows alongside the shapes indicate the direction of extrusion. By NerdBoy1392 (Own work) [CC BY-SA 3.0orGFDL],via Wikimedia Commons

Notes

[1] See the series of about nine posts that begins here.

[2] The Rationalists missed here a golden opportunity to relate number and dimension by defining square root much too narrowly. They seem to have been so mesmerized by their algebraic equations that they failed to pursue the search into deeper significance pertaining to essential linkages between dimension and number that intuition and imagination might have bestowed.

[3] As Shakespeare correctly pointed out, a rose by any name would smell as sweet. Plus one times plus one certainly equals plus one but that has nothing to do with actual square root really, just with algebraic linear multiplication.  Note has often been made in these pages of the difference between mathematical truth and scientific truth. Whereas mathematics demands only adherence to its axioms and consistency,  science requires empirical proof.  Mathematics defined square root in a certain manner centuries ago, and has since been devoutly consistent in its adherence to that definition.  In so doing it has preserved a cherished doctrine of mathematical truth, as though in formaldehyde.  It has also for many centuries contrived to be consistently scientifically incorrect.  The problem lies in the fact it has converted physicists and near everyone else to its own insular worldview.

[4] For an early discussion of the probable plane, potential dimensions, and probable numbers see here.


© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 306-

A Short Philosophical Aside

image

The scrupulous 3-dimension world we humans inhabit is in fact biological, not physical, in origin.  Its limitations are determined by our specific sensory, motor and mental apparatus and abilities. It only hints at the real world, and while doing so it combines some highly erroneous observations as well.  Molluscs and insects and arachnids all have a very different perspective of their environment.  We would find discomfort in the world view of an octopus,  as we do in the quantum world view.[1][2]

Dimension is a term laymen toss about haphazardly. Mathematicians and physicists have a more precise interpretation concerning dimension. For them,  any independent parameter constitutes a separate dimension. But when it comes down to the nitty-gritty, what if anything can truly be separate and independent?  Those  are both  relative terms.  Nothing that exists is really fully isolate and independent.  That is one of the substratal premises from which mandalic geometry evolves: relationships invariably exist. And relationships can always change.  Mandalic geometry therefore is a geometry of process - a spacetime geometry, not one of space alone.

For those who created the primal I Ching relationship was considered a fundamental aspect of reality. When they thought of dimension - - - and they did, in their own way - - - relationships were always involved.  Flash-forward a few thousand years  -  quantum mechanics  accomplishes much the same with its view of  interacting particles in continual motion,  ever-changing, and incessantly forging transient effective links with numerous other particles of similar and different type under the influence of various fields of force.

Kant thought that human concepts and categories determine our view of the world and its laws.  He held that inborn features of our minds structure our experiences.  Since, in his view, mind shapes and structures experience,  at some level of representation  all human experience  shares certain essential operational features. Among these according to Kant are our concepts relating to space and time, integral to all human experience. The same might be said about our concepts of cause and effect.

Kant further asserts that we never have direct experience of things, referred to in his writings as the noumenal world. All we experience is the  phenomenal world  that is relayed to us by our senses. Kant views noumena as  the thing-in-itself  or true reality  and  phenomena as our experience or perception of that thing, filtered through our senses and reasoning. According to Kant science can be applied only to things that can be  observed and studied.  The entire  world of noumena  is beyond the scope and reach of science. As an heir to Enlightenment philosophy Kant respects the value of reason but believes the noumenal world to be beyond its scope and reach. So are we fated then never to experience the noumena directly?  Not by a long shot.  Kant claims  the noumena  to be accessible but only by intellectual intuition without the aid of reason.[3]

In the world of phenomena nothing is self-existent. Everything exists by virtue of dependence on something else.  Point to something, anything at all,  that refutes that view and I’ll tell you you’re out of your mind - and in the noumenal world. What,  pray tell,  are you doing there and how did you get there anyway? If you can clearly communicate the how I may give it a try myself.[4]

Image:

One of a set of illustrations by Emma V. MooretitledNoumena - Collages © Emma V Moore 2013 courtesy of the artist. More of her exceptional art can be found at http://www.emmavmoore.co.uk. Follow also on Bēhance Please do not remove credits.

Notes

[1] The world view granted us by our inherited biologic capacities has been millions of years in the making.  Indeed.  But that makes it still not a whit truer than had we groped it only yesterday. Evolution seems to have sacrificed a full immersive sense of reality to grant a greater degree of interoperability essential to dealing with vicissitudes of a material world and confer durability within that domain.  The quest after true apprehension we feel impelled to pursue is a siren not without danger.

“The search for reality is the most dangerous of all undertakings, for it destroys the world in which you live.”
                                                                                                        -Nisargadatta Maharaj

[2] Regarding the origin and transformations of the word “scrupulous”:

Scrupulous and its close relative “scruple”  (“an ethical consideration”) come from the Latin noun scrupulus, the diminutive of “scrupus.” “Scrupus” refers to a sharp stone, so scrupulus means “small sharp stone.” “Scrupus” retained its literal meaning but eventually also came to be used with the metaphorical meaning “a source of anxiety or uneasiness,”  the way a sharp pebble in one’s shoe would be a source of pain.  When the adjective “scrupulous” entered the language in the 15th century,  it meant “principled.”  Now it also commonly means "painstaking" or “careful.” [Source]

Sad to say, this fascinating word that so successfully wended its way through several related incarnations in a number of different Indo-European languages prior to its appearance in English, c.15th century, appears to be passing out of usage among English speakers in modern times. We will likely be left with the occasional utterance of “scruples”  but “scrupulous” itself  seems destined for oblivion.

Curiously, my election of the word here was not rationally motivated. As I was framing the thought expressed in the paragraph in my mind, the word just appeared out of nowhere and seemed to insist, “I belong here though you may not yet understand why.  You really need a word with my complex heritage of multiple meanings here.”  And so I went with it, not fully knowing why. Funny thing about it, my rational mind is quite unable now to come up with any other single word that suits as well.

[3] Kant’s epistemology recognizes three different sources of knowlege: sensory experience, reason, and intuition. He views intuition as independent of the other two and the only one of the three with direct access to the world of noumena. This may present as suspect at first, but then how do we explain things like what Einstein did a century ago? Einstein himself has hinted in his writings at the essential role of intuition and imagination in his thinking.

image

Slide 25 of 48

Clickhere for more slides on Kant’s philosophy by William Parkhurst from Introduction to Philosophy Lecture 13, source of the above slide reproduction.

[4] Our human penchant for categorization inevitably leads to dismemberment of holistic reality into an endless number of manifest objects, many of which we no longer recognize as essentially related.

“People normally cut reality into compartments, and so are unable to see the interdependence of all phenomena. To see one in all and all in one is to break through the great barrier which narrows one’s perception of reality.”
                                                                                         -Thích Nhất Hạnh


© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 305-

Neo-Boolean - II: Logic Gates
Thinking Inside the Lines

image

(continued from here)

We have already looked briefly at three of the more important Boolean operators or logic gates:  AND, OR,andXOR.NOT just toggles  any two Boolean truth values  (true/false; on/off; yes/no).  Here we introduce two new logic gates which do not occur in Boolean algebra. Both play an important role in mandalic geometry though.

We’ll refer to the first of these new operators or logic gates as INV standing for  inversionorinvert.  This is similar to Boole’s NOT except that it produces toggling betweeen  yang/+ and yin/- instead of 1 and 0. Because it is based on binary arithmetic, Boole’s NOT has been thought of as referring to inversion also (as in ONorOFF). Although both ANDandINV act as toggling logic gates they have very different results in the greater scheme of things,  since nature has created a  prepotent disparity between a  -/+ toggle  and a  0/1 toggle  in basic parameters of geometry, spacetime, and being itself. This makes Boole’s AND just a statement of logical opposition, notinversion.

Recognition of this important difference is built into mandalic geometry structurally and functionally,  as it is also into Cartesian coordinate dynamics and the logic of the I Ching,  but lacking in  Boole’s symbolic logic. This is necessarily so, as there is no true negative domain in Boolean algebra.  The OFF state of electronics and computers, though it may sometimes be thought of in terms of a negative state, is in fact not. It relates to the  Western zero (0), not the  minus one  of the number line. Where Boolean algebra speaks of  NOT 1  it refers specifically to zero and only to zero. When mandalic geometry asserts  INV 1  it refers specifically to  -1  and only to  -1 . The inversion of yang then is yin and the inversion of yinisyang.[1]  In the I Ching,  Taoist thought,  and mandalic geometry the two are not opposites but complements and, as such, interdependent.

The second added logic gate that will be introduced now is the REV operator standing for reversionorrevert. This operator produces no change in what it acts upon.  It is the multiplicative identity element (also called the neutral elementorunit element),  as INV is the inverse element. In ordinary algebra the inverse element is -1, while the identity element is 1. In mandalic geometry and the I Ching the counterparts are yinandyang, respectively. If Boolean algebra lacks a dedicated identity operator, it nonetheless has its Laws of Identity which accomplish much the same in a different way:

  • A = A
  • NOT A = NOT A

Again, Boolean algebra has no true correlate to the INV operator. There can be no  sign inversion formulation  as it lacks negatives entirely. Although Boolean algebra may have served analog and digital electronics and digital computers quite well for decades now,  it is incapable of doing the same for any quantum logic applications in the future, if only because it lacks a negative domain.[2]  It offers up bits readily but qubits only with extreme difficulty and those it does are like tears shed by crocodiles while feeding.

(to be continued)

Image: Boolean Search Operators. [Source]

Notes

[1] Leibniz’s binary number system, on which Boole based his logic, escapes this criticism, as Leibniz uses 0 and 1 simply as notational symbols in a modular arithmetic and not as  contrasting functional elements in an algebraic context  of either the Boolean or ordinary kind.

In the field of computers and electronics,  Boolean refers to a data type that has two possible values representing true and false.  It is generally used in context to a deductive logical system known as Boolean Algebra. Binary in mathematics and computers, refers to a base 2 numerical notation. It consists of two values 0 and 1. The digits are combined using a place value structure to generate equivalent numerical values. Thus, both are based on the same underlying concept but used in context to different systems. [Source]

[2] Moreover,  I expect physics will soon enough discover that what it now calls antimatter  is in some sense and to some degree a necessary constituent of  ordinary matter.  I can already hear  the loudly objecting voices  declaring matter  and  antimatter  in contact  necessarily annihilate one another,  but that need not invalidate the thesis just proposed.  My supposition revolves around the meaning of “contact” at Planck scale and the light speed velocity at which subatomic particles are born, interact and decay only to be revived again in an eternal dance of creation and re-creation. Material particles exist in some kind of structural and functional  homeostasis,  not all that unlike the  anabolic  and catabolic mechanisms that by means of negative feedback maintain all entities of the biological persuasion in the  steady state  we understand as life. Physics has yet to  get a full grip  on  this  aspect of reality,  though moving ever closer with introduction of quarks and gluons to its menagerie of performing particles.


© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 304-

Mandalic Line Segments,
Entanglement and Quantum Gravity
Part I

image

(continued from here)

We are going to consider once again now geometric line segments of mandalic geometry  and  their relation to Cartesian line segments and the Western number line. Yes,  this is sort of a detour from what I stated we would look at next. But this is not unrelated and lies at the very heart of mandalic geometry, and I’m not yet ready to address what I projected in the last remark of my previous post.

I keep returning to this subject because of its extreme importance. Beyond its significance to understanding the logic encoded in mandalic geometry and the I Ching, I believe it may also hold the key to quantum entanglement and quantum gravity.  Despite the fact that mandalic line segments are really fundamentally mental constructs,  a fiction of sorts, it is still important to understand how they are composed and how their components interact.  Though they may themselves be fictions,  the line segments and the points that compose them do in fact map a number of physical entities,  realities that may be related to quantum numbers and quantum particles and states.

When Descartes invented his coordinate system, with its points and line segments,  he based his system on the number line extended to two or three dimensions. In modeling it on the number line the space he described was imagined to bear a  necessary  one to one correspondence to the real numbers.[1]  However this  1:1 mapping  of geometric space to the real numbers was a premise implicitly assumed by Descartes.  It was in fact axiomatic,[2]  but apparently not stated as such.[3]  As a result, the presumed relation has become a blind spot[4] in Western thought,  never proved nor disproved, at least not at subatomic scales.[5]

Neither mandalic geometry nor the primal I Ching make such an assumption. In place of Descartes’ 1:1 correspondence of geometric space and the numbers on the number line, we find a mandalic arrangement in which there are different categories of spatial location which can host one or more discrete numbers in a probabilistic manner.  This creates various dimensional amplitudes and a multidimensional waveform of component entities.[6]

To my mind these characteristics of the mandalic coordinate system in combination with others described elsewhere make it more relevant to investigation and interpretation of many quantum phenomena which are as yet poorly understood than Cartesian coordinate dynamics may be and without need for recourse to imaginary numbers and complex plane.

(continuedhere)

Image: 6 steps of the Sierpinski carpet, animated. By KarocksOrkav (Own work) [CC BY-SA 3.0],via Wikimedia Commons

Notes

[1] Real numbers are numbers that can be found on the number line. This includes both the rational and irrational numbers.

[2] That is to say, taken for granted as self-evident.

[3] See Note [4] here.

[4] We have lived with this unproved premise so long that we no longer even question it,  or imagine that there might be an alternative which conforms better to reality at certain scales, notably subatomic scales.  The I Ching also seems to suggest  that a complete true description of complex relationships that involve a large number of dimensions,  including complex societal relationships,  requires more than a simple 1:1 correspondence between the notational symbols involved and the realities they represent.

[5] And from what I can see, no one seems to have much interest in proving or disproving this assumption.

[6] When speaking about hexagrams the number of dimensions involved is six as each Line of the hexagram encodes a value for a single distinct dimension in a 6-dimensional space.  In a hybrid 6D/3D compositing of dimensions though, two such Lines in relation reference a single Cartesian dimension in 2- or 3-space.  A concept not to be missed here is that  interactions of quantum particles  may well involve such  integration of dimension,  of dimensions  we are not even aware of beyond the unsettling fact  they upset the neat applecart of customary conceptual categories.

© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form.  Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 301-

Beyond Taoism - Part 5
A Vector-based Probabilistic
Number System
Part II


image
image

(continued from here)

Taoism and the primordial I Chingare in agreement that temporal changes have two different aspects: sequent and cyclic.  Western thought in general follows suit. The I Ching differs from the other two in asserting that  the direction of change - for both sequent and cyclic change - is fully reversible,  with the proviso  that sufficiently small units of measurement are involved.[1]  The probability that reversal can be achieved  diminishes proportionately to the magnitude of change that has taken place.[2]

Taoist appropriation of bigrams and trigrams of the I Ching to model such phenomena as change of seasons and phases of the moon  is plausible if not quite legitimate. The natural phenomena so modeled are macroscopic and vary continuouslyandinexorably throughout an ever-repeating cyclic spectrum. And there’s the rub.

image

As they occur and function in the I Ching bigrams and trigrams are dicontinuous discrete elements,  formed by other similarly discontinuous discretized entities,  and they follow evolutionary courses which are most often nonrepetitive. So the Taoist usage is misleading at best, annihilative at worst. Unfortunately, as the I Ching itself evolved through centuries of commentaries and reinterpretations,  it became  ever more contaminated and tainted by these Taoist corruptions of meaning, at the same time that it was being inundated by  Confucian sociological and ethical reworkings.  What we have today is an amalgam, the various parts of which do not sit well with one another.[3]

Though it may in part be hyperbole to prove a point,  the stark difference between the two approaches,  that of Taoism and that of the I Ching, is epitomized by comparison of the Taoist diagram of the cycle of seasons with diagrams at the top and bottom of the page,  which are based on  the  number,  logic,  and coordinate systems of   The Book of Changes.[4] The increased complexity of the latter diagrams should not prove a stumbling block, as they can be readily understood in time with focus and attention to detail.  The  important take-away  for now is that in the I Ching bigrams  exist within a larger dimensional context  than the Taoist diagram avows,  and this context makes all their interactions more variable,  conditional,  and complex. As well, the same can be said of trigrams and hexagrams.

One of the more important aspects of these differences has to do with the notion of equipotentiality.  As bigrams and trigrams function within  higher dimensional contexts  in the  I Ching,  this introduces a possibility of multiple alternative paths of movement and directions of change.  Put another way,  primordial I Ching logic encompasses many more  degrees of freedom  than does the logic of Taoism.[5]  There is no one direction or path  invariably decreed or favored.  An all-important element of conditionality prevails.  And that might be the origin of what quantum mechanics has interpreted as indeterminism or chance.

Next up, a closer look at equipotentiality and its further implications.


image

Section FH(n)[6]

(continuedhere)

Notes

[1] There are exceptions. Taoist alchemy describes existence of certain changes that admit reversibility under special circumstances.  Other than the Second Law of Thermodynamics (which is macroscopic in origin,  not result of any internally irreversible microscopic properties of the bodies), the laws of physics neglect all distinction between forward-moving timeandbackward-moving time. Chemistry recognizes existence of certain states of equilibrium in which the rates of change in both directions are equal. Other exceptions likely occur as well.

[2] Since change is quantized in the I Ching, which is to say, it is divided into small discretized units,  which Line changes model,  the magnitude of change is determined by the number of Line changes that have occurred  between Point A and Point B in spacetime.  Reversal is far easier to achieve if only a single Line change has occurred than if three or four Lines have changed for example.

[3] Ironically, Taoism itself has pointed out the perils of popularity. Had the I Ching been less popular, less appealing to members of all strata of society, it would have traveled through time more intact.  Unless,  of course,  it ended up buried or burned. What is fortunate here is that much of the primordial logic of the I Ching can be reconstructed by focusing our attention on the diagrammatic figures and ignoring most of the attached commentary.

[4] These diagrams do not occur explicitly in the I Ching. The logic they are based on, though, is fully present implicitly in the diagramatic structural forms of hexagrams, trigrams, and bigrams and the manner of their usage in  I Ching divinatory practices.

[5] Or, for that matter, than does the logic of Cartesian coordinate space if we take into account the degrees of freedom of six dimensional hexagrams mapped by composite dimensional methodology to model mandalic space. (See Note [4] here for important related remarks.)

[6] This is the closest frontal section to the viewer through the 3-dimensional cube using Taoist notation.  See here for further explanation.  Keep in mind this graph barely hints at the complexity of relationships found in the 6-dimensional hypercube which has in total 4096 distinct changing and unchanging hexagrams in contrast to the 16 changing and unchanging trigrams we see here. Though this model may be simple by comparison,  it will nevertheless serve us well as a key to deciphering the number system on which I Ching logic is based as well as the structure and context of the geometric line that can be derived by application of reductionist thought to the associated mandalic coordinate system of the I Ching hexagrams. We will refer back to this figure for that purpose in the near future.

© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 300-

Beyond Taoism - Part 4
A Vector-based Probabilistic
Number System
Introduction


image
image

(continued from here)

Leibniz erred in concluding the hexagrams of the I Ching were based on a number system related to his own  binary number system.  He had a brilliant mind but was just as fallible as the rest of us.  He interpreted the I Ching in terms of his own thought forms,  and he saw the hexagrams as a foreshadowing of his own binary arithmetic.[1]

So in considering the hexagram Receptive,  Leibniz understood the number 0; in the hexagram Return, the number 1; in the hexagram Army, the number 2; in the hexagram Approach, the number 3;  in the hexagram Modesty,  the number 4;  in the hexagram  Darkening of the Light, the number 5;  and so on, up to the hexagram Creative, in which he saw the number 63.[2]  His error is perhaps excusable in light of the fact that the Taoists, though much closer to the origin of the I Ching in time, themselves misinterpreted the number system it was based on.[3]

image

From our Western perspectiveI Ching hexagrams are composed of trigrams, tetragrams, bigrams, and ultimately yinandyang Lines. From the native perspective of the I Ching this order of arrangement is putting the cart before the horse.  Dimensions  and their interactions  are,  in the view of I Ching philosophy and mandalic geometry,  antecedent logically and materially to any cognitive parts we may abstract from them. Taoism in certain contexts has abstracted the parts and caused them to appear as if primary. It has the right to do so if creating its own philosophy,  but not as interpretation of the logic of the I Ching. It is a fallacy if so intended.[4]

The Taoists borrowed from the I Ching two-dimensional numbers, treated them as one-dimensional and based their quasi-modular number system on  the dimension-deficient result.  This is the way they arrived at their seasonal cycle consisting of bigrams:   old yin (Winter),  young yang (Spring), old yang (Summer), young yin (Autumn), old yin (Winter),  and so forth. This represents a very much impoverished and impaired version of the original configuration in the primal strata of the I Ching.[5]

image

The number system of the I Ching is not a linear one-dimensional number system like  the positional decimal number system  of the West; nor is it like the positional binary number system invented by Leibniz. It is not even like the quasi-modular number system of Taoism.  The key to the number system of the hexagrams is located not in the 64 unchanging explicit hexagrams,  but rather in the changing implicit hexagrams found only in the divination practice associated with the I Ching. These number 4032.[6]  The manner in which these operate,  however,  is actually  fairly simple and is uniform throughout the system.  So once understood,  they can be safely relegated to the implicit background, coming into play only during procedures involving divination or in attempts to understand the system fully, logically and materially.  When dealing with more ordinary circumstances just the 64 more stable hexagrams need be attended to in a direct and explicit manner.

The Taoist sequence of bigrams is in fact a corruption of the far richer asequential multidimensional arrangement of bigrams that occurs in I Ching hexagrams and divination. There we see that change can occur from any one of the four stable bigrams to any other.  If this is so then no single sequence can do justice to the total number possible. The ordering of bigrams presented by Taoism is just one of many that make up the real worlds of nature and humankind.  Taoism imparts special significance to this sequence; the primal I Ching does not. It views all possible pathways of change as equally likely.[7]

Next time around we will look further into the implications of this equipotentiality and see how it plays out in regard to the number system of the I Ching.


image

Section FH(n)[8]

(continuedhere)

Notes

[1] By equating yang with 1 and yin with 0 it is possibletosequence the 64 I Ching hexagrams according to binary numbers 0 through 63.  The mere fact that this is possible does not, however, mean that this was intended at the time the hexagrams were originally formulated. Unfortunately, this arrangement of hexagrams seems to have been the only one of which Leibniz had knowledge. This sequence was, in fact, the creation of the Chinese philosopher Shao Yong (1011–1077). It did not exist in human mentation prior to the 11th century CE.

This arrangement was set down by the Song dynasty philosopher Shao Yong (1011–1077 CE), six
centuries before Wilhelm Leibniz described binary notation. Leibniz published ‘De progressione
dyadica’ in 1679. In 1701 the Jesuit Joachim Bouvet wrote to him enclosing a copy of Shao Yong’s 'Xiantian cixu’ (Before Heaven sequence). [Source]

Note also that the author of Calling crane in the shade, the source quoted above, calls attention to confusion that exists about whether the “true binary sequence of hexagrams” should begin with the lowest line as the least significant bit (LSB) or the highest line. He points out that the Fuxi sequence as transmitted by Shao Yong in both circular and square diagrams takes the highest line as the LSB, although in fact it would make more sense in consideration of how the hexagram form is interpreted to take the lowest line as the LSB. My thinking is that either Shao Yong misinterpreted the usage of hexagram form or, more likely, the conventional interpretation of the Shao Yong diagrams is incorrect. Here I have chosen to use the lowest line of the hexagram as the LSB,  and I think it possible  Leibniz may have done the same.

If one considers the circular Shao Yong diagram,  the easier of the two to follow,  one can reconstruct the binary sequence,  with the lowest line as LSB,  by beginning with the hexagram EARTH at the center lower right half of the circle, reading all hexagrams from outside line (bottom) to inside line (top),  progressing counterclockwise to  MOUNTAIN over WIND at top center, then jumping to hexagram  MOUNTAIN over EARTH  bottom center of left half of the circle,  and progressing clockwise to hexagram  HEAVEN  at top center.  Of the two,  this is the interpretation that makes the more sense to me and the one I have followed here, despite the fact that it is not the received traditional interpretation of the Shao Yong sequence. Historical transmissions have not infrequently erred. Admittedly it is difficult to decipher all Lines of some of the hexagrams  in the copy Leibniz received due to passage of time and its effects on paper and ink.  Time is not kind to ink and paper, nor for that matter to flesh and products of intellect.

In the final analysis, which of the two described interpretations is the better is moot because neither conforms to the logic of the I Ching which is not binary to begin with. Moreover,  there is a third interpretation of the Shao Yong sequence that is superior to either described here.  It is not binary-based.  And why should it be? After all the Fuxi trigram sequence  which Shao Yong took as model for his hexagram sequence  is itself not binary-based. Perhaps we’ll consider that interpretation somewhere down the road. For now, the main take-away is that Leibniz, in his biased interpretation of the I Ching hexagrams made one huge mistake.  Ironically,  had he not some 22 years prior already invented  binary arithmetic, this error likely would have led him to invent it.  It was “in the cards” as they say. At least in certain probable worlds.

[2]ReceptiveandCreative are alternative names for the hexagrams EarthandHeaven, respectively. The sequence detailed can be continued ad infinitum using yin-yang notation, though of course this takes us beyond the realm of hexagrams into what would be, for mandalic geometry and logistics of the I Ching, domains of dimensions numbering more than six.  Keep in mind here though that Leibniz was not thinking in terms of dimension but an  alternative method  of expressing the prevalent base 10 positional number system notation of the West.  He held in his grasp the key to unlocking an even greater treasure but apparently never once saw that was so.  This seems strange considering his broadly diversified interests and pursuits in the fields of  mathematics,  physics,  symbolic logic,  information science,  combinatorics,  and in the nature of space.  Moreover,  his concern with these was not just as separate subjects of investigation.  He envisaged uniting all of them in a  universal language  capable of expressing mathematical,  scientific, and metaphysical concepts.

[3] Earlier in this blog I have too often confused Taoism with pre-Taoism. The earliest strata of the I Ching belong to an age that preceded Taoism by centuries, if not millennia.  Though Taoism was largely based on the philosophy and logic of the I Ching,  it didn’t always interpret source materials correctly,  or possibly at times it intentionally used source materials in new ways largely foreign to the originals. The number system of the I Ching is a case in point.

In the interest of full disclosure, I am not an expert in the history or philosophy of Taoism.  Taoist philosophies are diverse and extensive. No one has a complete set or grasp of all the thoughts, practices and techniques of Taoism. The two core Taoist texts, the  Tao Te ChingandChuang-tzu,   provide the philosophical basis of Taoism which derives from the eight trigrams (bagua) of Fu Xi, c. 2700 BCE, the various combinations of which created the 64 hexagrams documented in the I Ching.  The Daozang,  also referred to as  the Taoist canon,  consists of around 1,400 texts that were collected c. 400, long after the two classic texts mentioned. What I describe as Taoist thought then is abstracted in some manner from a huge compilation, parts of which may well differ from what is presented here. Similar effects of time and history can be discerned in Buddhism, Christianity, Islam and secular schools of thought like Platonism,Aristotelianism,Humanism, etc.

[4] Recent advances in the sciences have begun to raise new ideas regarding the structure of reality. Many of these have parallels in Eastern thought.  There has been a shift away from the reductionist view in which things are explained by breaking them down then looking at their component parts, towards a more holistic view. Quantum physics notably has changed the way reality is viewed. There are no certainties at a quantum level, and the experimenter is necessarily part of the experiment. In this new view of nature everything is linked and man is himself one of the linkages.

[5] It is not so much that this is incorrect as that it isextremelylimiting with respect to the capacities of the I Ching hexagrams.  A special case has here been turned into a generalization that purports to cover all bases. This may serve well enough within the confines of Taoism but it comes nowhere near elaborating the number system native to the I Ching. We would be generous in describing it as a watered down version of a far more complex whole.  Through the centuries both Confucianism and Taoism  restructured the I Ching to make it conducive to their own purposes.  They edited it and revised it repeatedly,  generating commentary after commentary,  which were admixed with the original,  so that the I Ching as we have it today,  the I Ching of tradition,  is a hodgepodge of many convictions and many opinions. This makes the quest for the original features of the I Ching somewhat akin to an archaeological dig.  I find it not all that surprising  that the oracular methodology of consulting the I Ching  holds possibly greater promise in this endeavor than the written text.  The  early oral traditions  were preserved better,  I think,  by the uneducated masses who used the I Ching as their tool for divination than by philosophers and scholars who,  in their writings,  played too often a game of one-upmanship with the original.

[6] A Line can be either yin or yang, changing or unchanging. Then there are four possible Line types and six Lines to a hexagram.  This gives a total of 4096 changing and unchanging hexagrams (46 = 4096). Since there are 64 unchanging hexagrams (26 = 64) there must be 4032 changing hexagrams (4096-64 = 4032).

[7] This calls to mind the path integral formulation of quantum mechanics which was developed in its complete form by Richard Feynman in 1948. See, for example, this description of the path integral formulation in context of the double-slit experiment, the quintessential experiment of quantum mechanics.

[8] This is the closest frontal section to the viewer through the 3-dimensional cube using Taoist notation.  See here for further explanation.  Keep in mind this graph barely hints at the complexity of relationships found in the 6-dimensional hypercube which has in total 4096 distinct changing and unchanging hexagrams in contrast to the 16 changing and unchanging trigrams we see here. Though this model may be simple by comparison,  it will nevertheless serve us well as a key to deciphering the number system on which I Ching logic is based as well as the structure and context of the geometric line that can be derived by application of reductionist thought to the associated mandalic coordinate system of the I Ching hexagrams. We will refer back to this figure for that purpose in the near future.

© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 299-

Beyond Taoism - Part 3
A Multidimensional Number System


image
image

(continued from here)

Descartes modeled his coordinate system on the Western number line,  itself an extension of the decimal number system to include the new negative numbers, and upon the Euclidean notion of a three-dimensional geometry.  All these events took place in historical times.  In approaching the I Ching and its number system we are dealing mostly with events that took place before recorded history so it is impossible to say with certainty how anything involved came about.  We can’t so much as be sure whether the I Ching was based on an antecedent number system,  or predated and foreshadowed a subsequent number system of Chinese antiquity possibly contingent on it. We view all such things as through a glass, darkly.[1]

It is clear, though, that the number system of the I Ching is one far more complex than that of Western mathematics.  The number system of the West is unidimensional (linear).  Descartes,  in his coordinate system, extends it for use in three dimensions. The number system of the I Ching, on the other hand,  is  in origin  multidimensional.  It is mandalic as well, which is to say it consists of multiple dimensions interwoven in a specific manner which can best be characterized as mandalic in form,  possessing a number of interlaced and interlinked concentric shells or orbitals about a unifying center.

At the important origin of Descartes’ coordinate system is found his triple zero ordered triad (0,0,0).  Descartes  views this point,[2] asall his points, primarily in terms of location, not relationship.  The matter of relationship is left to analytic geometry,  the geometry Descartes codified based on his coordinate system.[3] The coordinate system itself seems not to care how points are formed or related beyond the most elementary and trivial operations of addition and subtraction throughout what essentially remain predominantly isolated dimensions.[4] In the end this becomes an effective and prodigious mind snare.[5]

In contrast to the Cartesian approach,theI Ching offers a unified coordinate system and geometry in a single entity which emphasizes the relationship of “points” and other “parts” (e.g.,  lines,  faces) as much,  if not more,  than location,  beginning with wholeness and ending with the same.  In between,  all sorts of  complex and interesting interactions and changes take place.  In analyzing these,  it is best to begin at the origin of the coordinate system of the I Ching,  the unceasing wellspring  of  being that supplants the triple vacuity of Descartes and Western mathematics.


image

Section FH(n)[6]

(continuedhere)

Notes

[1] My thinking is that the I Ching was originally primarily a non-numerical relationship system that subsequently was repurposed to include,  as one of its more important contextual capacities, numerical relationships. That said, from a contemporary perspective,  rooted in  a comprehensive awareness that spans combinatorics,  Boolean algebra,  particle physics, and the elusive but alluring logic  of  quantum mechanics and the Standard Model,  it would seem that this relationship system is an exemplary candidate for an altogether natural number system, one that a self-organizing reality could readily manage.

[2] As do most geometers who follow after Descartes.

[3] Strictly speaking, this approach is not in error, though it does seem a somniferous misdirection.  Due to the specific focus and emphasis enfolded in Descartes’ system, certain essential aspects of mathematical and physical reality tend to be overlooked. These are important relational aspects,  highly significant to particle physicists among others. These remarks are in no way intended to denigrate  Cartesian  coordinates and geometry,  but to motivate physicists and all freethinkers  to investigate further in their explorations of reality.

[4] The Cartesian system neglects, for instance, to express anywhere that the fact  the algebra of the real numbers  can be employed to yield results about the linear continuum of geometry relies on  the Cantor–Dedekind axiom,  which in mathematical logic

has been used to describe the thesis that the real numbers are order-isomorphic to the linear continuum of geometry. In other words, the axiom states that there is a one to one correspondence between real numbers and points on a line.

This axiom is the cornerstone of analytic geometry. The Cartesian coordinate system developed by René Descartes explicitly assumes this axiom by blending the distinct concepts of real number system with the geometric line or plane into a conceptual metaphor. This is sometimes referred to as the real number line blend. [Wikipedia]

Neither mandalic geometry nor the I Ching,  upon which it is based,  accept this axiom as true in circumstances other than those restrictive settings, such as Cartesian geometry, where it is explicitly demanded as axiomatic to the system. In other words,  they do not recognize the described one to one correspondence between number and geometric space as something that reality is contingent on. The assumption contained in this axiom, however, has been with us so long that we tend to see it as a necessary part of nature.  Use of the stated correspondence may indeed be expedient in everyday macro-circumstances but continued use in other situations,  particularly to describe subatomic spatial relations,  is illogical and counterproductive, to paraphrase a certain Vulcan science officer.

[5] For an interesting take on the grounding metaphors at the basis of the real number line and neurological conflation see  The Importance of Deconstructing the Real Number Line.  Also on my reading list regarding this subject matter  is Where Mathematics Comes From:How the Embodied Mind Brings Mathematics into Being(1,2,3) by George Lakoff and Rafael Nuñez. Neither of the authors is a mathematician, but sometimes it is good to get an outside perspective on what is in the box.

[6] This is the closest frontal section to the viewer through the 3-dimensional cube using Taoist notation.  See here for further explanation.  Keep in mind this graph barely hints at the complexity of relationships found in the 6-dimensional hypercube which has in total 4096 distinct changing and unchanging hexagrams in contrast to  the 16 changing and unchanging trigrams we see here.  Simple by comparison though this model may be it will nevertheless serve us well as a key to deciphering the line derived from the mandala of I Ching hexagrams, and we will be referring back to this figure for that purpose in the near future.


© 2015 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 298-

Beyond Taoism - Part 2
Number System of the I Ching


image
image

(continued from here)

Many different number systems exist in the world today. Others have existed in times past. The number system we are most familiar with is base 10 or radix 10,  which makes use of ten digits,  numbered  0  to  9. Beyond the number 9, the numbers recapitulate, beginning again with 0 and shifting a new “1” to the 10s position, in a positional number system. Using this conventional technique all integers and decimals can be easily and uniquely expressed.  This familiar  numeral system  is also known as the decimal system.[1]

Another number system we are familiar with and use every day is the modular numeral system, particularly in its manisfestation of modulo 12, better known as clock arithmetic.  This is a system of arithmetic in which integers “wrap around” and begin again upon reaching a set value, called the modulus. For clock arithmetic, the modulus used is 12. On the typical 12-hour clock,  the day is divided into two equal periods of 12 hours each. The 24 hour / day cycle starts at 12 midnight  (often indicated as 12 a.m.), runs through 12 noon  (often indicated as 12 p.m.),  and  continues  to the midnight at the end of the day. The numbers used are 1 through 11 and 12 (the modulus,  acting as zero).  Military time is similar,  only is based on a 24-hour clock with modulus-24 rather than modulus-12. The modulus-24 system is the most commonly used time notation in the world today.

Binary arithmetic is similar to clock arithmetic, but is modulo-2 instead of modulo-12.  The only integers used in this system are  0 and 1, with the “wrap around” back to zero occurring each time the number 1 is reached.  Computers, in particular, handle this arithmetic system,  which we owe to Leibniz, with remarkable acumen. George Boole also based his true/false logic on binary arithmetic.  This, in itself, accounts for some of its strange, counterintuitive aspects,  like the fact that in Boolean algebra the sum of 1 + 1 equals 0.  Not your father’s arithmetic.  But both Leibniz and Boole found profound uses for it. As did the entire digital revolution.

When we come to consideration of the number system and arithmetic used in the I Ching we can anticipate encountering equal difficulty in comprehension, possibly more. The system employed is a modular one - sort of.  However,  it uses negative 1 (yin) as well as positive 1 (yang) whereas zero (0) is nowhere to be seen, at least not in guise of  an explicit dedicated symbol  earmarked for the purpose. The "wrap around" appears to occur at both -1 (yin)  and  +1 (yang). Something different and quite extraordinary is going on here. This is no simple modular numeral system, though it may be masquerading as one.

Thus far the number system of the I Ching sounds much like that of Taoism. It is not, though. We have some big surprises in store for us.


image

Section FH(n)[2]

(continuedhere)

Notes

[1] See here for a list/description of numeral systems having other bases. A more comprehensive list of numeral systems can be found here.

[2] For explanation of this diagram see here.


© 2015 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 297-

Quantum Naughts and Crosses Revisited - VIII
The Cube Sliced and Diced
Transliteration Series: Section FH(n)


image
image

(continued from here)

We come now to the  Taoist/Cartesian  transliteration sections of the three-dimensional cube.[1] The frontal FH section seen below is the Cartesian xy-plane we’re all familiar with from the 2-dimensional version of the Cartesian coordinate system with the third Cartesian dimension (z) added to the labeling of points.  This gives us nine distinct Cartesian triad points: four vertices, four edge centers, and one face center.  For all of the points, the third Cartesian dimension (z) is constant in this slice,  and the vector value is positive (located toward the viewer with respect to the z=0 value of the z-axis or FHE plane which we’ll be viewing in a future post.)

The diagram shown here relates changing and unchanging trigrams of the I Ching to corresponding Cartesian ordered triads. Descartes views each of his ordered triads as referring to a single point having substantive reality in Cartesian geometric space. The I Ching and mandalic geometry, on the other hand,  regard the trigrams as evanescent composite states of being in a spacetime which is ever-changing. They are relational elements in some ways analagous to the subatomic entities of particle physics.

Accordingly, it should be further understood each “point” here, though shown as a flat “square”,  has a third dimension implied, and is therefore actually a “cube”, only one face of which is seen.[2]  Mandalic geometry considers the point a fictional device which actually refers to a common intersection of three or more planes in a three-dimensional context, or two or more lines in a two-dimensional context.  Moreover, mandalic geometry is a discretized geometry,  and the trigram must be considered as having a distributed domain of action. This is illustrated in all the Cartesian transliteration points by distributing eight copies of trigrams with appropriate changing and unchanging lines among eight vertex-analogues of each Cartesian point.

The key to labeling of points in this section[3]  and  all those to follow can be found here.  Additionally,  by tradition,  adding an “x” to a yin line indicates it is a changing line and adding an “o” to a yang line indicates it is a changing line.  A changing yin line is considered an old yin line which is changing to a yang line;  a changing yang line,  an old yang line that is changing to a yinline.

Vector addition of two or more yinlines yields a yin line as result. Vector addition of two or more yang lines gives a yang line as the result. Vector addition of an unequal number of yin lines and yang lines yields as result that vector (yinoryang) in excess. Vector addition of an equal number of yin lines and yang lines gives as result Cartesian zero which, in  mandalic systematics  is to be considered a vector (direction)  rather than a scalar (magnitude).  This goes far in explaining how  the I Ching and Taoism managed without an explicit zero.

Thezero was implicit or understood without using a special symbol of designation.  Moreover,  it was conceived as representative of an order of reality  entirely different from  that distinguished by  the Western zero. It is,  however,  fully commensurate with  Cartesian coordinate dynamics. It is this alternative zero,  with its extraordinary capacities,  that provides access to potential dimensions  and to different amplitudes of dimension. This will be further elaborated in a future post where we will address how Boolean logic impacts what we’ve covered here.

For now simply note that the changing yin Line and changing yang Line  in the horizontal first dimension (x)  in each “point” shown in the middle column add to zero,  not the  zero of scalar magnitude  though, but the zero of vector equilibrium.


image

Section FH(n)

In this section of the cube,  as in all frontal sections,  the third Line/dimension (z) never changes; the second Line/dimension (y) changes  only in columns,  as one progresses up or down;  the first Line/dimension changes only in the rows, progressing left or right. This is just a consequence of viewing  a two-dimensional Cartesian
xy-plane in context of a section of the three-dimensional Cartesian
xyz-cube. Although not the manner in which we are accustomed to viewing the plane,  it is nonetheless fully compatible with ordinary Cartesian coordinates.  It is simply an alternative perspective,  one more suited for analysis/demonstration of trigram relationships in a Cartesian setting.

(continuedhere)

Notes

[1] This should be viewed as a work in progress. I’m still feeling my way with this so the content and/or format may change in the future. What is demonstrated here does not yet take into account  the manner in which Boolean logic relates to the distribution of changing and unchanging trigrams nor does this series of cube sections include the all-important geometric method of composite dimension. As described,  this is simply a Taoist notation transliteration of Cartesian coordinate structure.  The meat and potatoes of the matter is yet to come.  Of particular note here, though,  is the fact that even at this early stage of translation to a version of mandalic geometry that can be considered comprehensive,  what is possibly best described as a decussationbetweenyinandyang lines is already evident at every Cartesian triad point containing a “Cartesian zero”.  Worth mentioning here, this will be a key feature addressed in future posts.

[2]Point,  square,  and cube,  have all been placed in quotation marks to indicate that what is being referred to here is actually a different category of objects or elements which should in some sense be understood as relating to fractals or fractal structure and of a different dimensionality entirely than are those ordinary geometric objects. The admittedly deficient terminology used here is necessitated by the fact that sufficiently appropriate vocabulary terms to describe the reality intended do not currently exist,  or if they do are not as yet known to me.  Since we are representing a Cartesian point (ordered triad) as a quasi-cubic structure here,  it must have  a near face (n) and a far face (f) in each section with respect to the viewer. The chart displayed details the near face (n) of Section FH.

[3] This is the frontal section through the cube nearest a viewer. It is Descartes’ xy-plane with label of the third dimension (z) added so each point label shown is a Cartesian ordered triad rather than an ordered pair as textbooks generally show the plane. Why the difference?  Because the geometry texts are interested only in demonstrating the two-dimensional plane in isolation,  whereas we want to see it as it exists in the context of three or more dimensions. Cartesian triads are shown by convention as (x,y,z),  so the xy-plane  emerges from the first two coordinates of the points in this section, and all the z-coordinates seen here are positive (+1). The FE plane has all of its x and y coordinates identical to those seen here but its z-coordinates are all negative (-1). The FHE plane has all the x and y coordinates identical to those seen here but its z-coordinates are all zero (0).


© 2015 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 296-

A Recap of Some Important Ideas Regarding Mandalic Geometry

image


  1. Mandalic geometry (MG) is a new kind of mathematical methodology based on a worldview having roots that predate written history.
  2. It is a discrete geometry which currently consists of just a coordinate system but can be extended as Descartes did his to encompass an entire analytic geometry.
  3. Mandalic geometry introduces and is based on a new number system, the probable number system (or probabilistic number system.)
  4. Just as the complex number system combines real numbers and imaginary numbers and is more robust than either, the probable number system combines real numbers and probable numbers and is more robust than either.
  5. The probable number system is also more robust than the complex number system. Complex numbers combine real numbers with imaginary numbers to form the single complex plane. Composite numbers combine real numbers with probable numbers to form six interdependent composite planes.
  6. Axiomatic to the system is the contention that numbers can exist in different dimensions and therefore can be described as being of some particular dimension. Numbers are always viewed and treated within context of a stated dimension.
  7. Probable numbers are an extension of the real numbers to higher dimensions and are independent of imaginary and complex numbers.
  8. Mandalic geometry does not admit the existence of square root of -1 in the real world other than in mathematics invented by the human mind. In place of square root of negative numbers, MG introduces the new concept of contra-square root. In brief this involves substitution of a combination form of interactive two-dimensional analogues of +1 and -1 for -1 as currently used in imaginary number contexts. This is more fully explained elsewhere in the blog.
  9. Put another way, in place of imaginary numbers MG posits the existence of probable numbers. These can be considered the result of what is essentially wavelike interactions of higher dimensional numbers to form the real numbers we know in the 3-dimensional world.
  10. Higher dimensional numbers can interact with one another through wavelike constructive and destructive interference to generate ordinary
    3-dimensional numbers. Numbers are not viewed as constants to be acted upon as Descartes so views them but rather as being themselves active and changeable. They participate in process. This feature alone enables composite numbers to mediate between mathematics and physics better than either real or complex numbers can.
  11. The interactions of higher dimensional numbers in the process of dimensional compositing to yield 3-dimensional numbers is a function of time and therefore probabilistic from our limited ordinary point of view. From this perspective, certain probablity distributions are the result of dimensional compositing and the consequent mandalic form. MG considers the probabilistic nature of quantum mechanics likely to be based on such.
  12. The probabilistic nature in three dimensions of what are here called probable numbers is what gives rise to the mandalic form which can in a sense be considered the 3-dimensional evolution of 6-dimensional numbers from protean representations through progressive differentiation of form to the stage of maximal differentiation and back again to the undifferentiated state of greatest probability.
  13. The mandalic form has a geometric progression of its line structures in the three Euclidean/Cartesian dimensions such that series of numbers of the form 1:2:1, 2:4:2, and 4:8:4 occur throughout all of those dimensions when a hybrid 6D/3D coordinate system results from performing 2:1 compositing from six to three dimensions.
  14. Mandalic geometry views points and lines in three dimensions as convenient fictions that exist only as evanescent probabilistic concurrences of analogous entities in higher dimensions.
  15. The probabilistic nature of MG makes it ideal for investigations and descriptions of quantum mechanics.
  16. The exclusion of imaginary and complex numbers and substitution of probable and composite numbers which are easily reducible to ordinary algebraic/arithmetic forms and can be worked with using the same methods as those mathematical disciplines makes MG more utilitarian and appropriate to application to quantum mechanics than are complex numbers. All operations performed are based on simple inversion (reflection through a point) and on real numbers, maintaining all the usual rules and properties of ordinary arithmetic, including commutativity (which quaternions fail to preserve.)
  17. MG is currently based on discrete numbers and is concerned mainly with the positive and negative integers. Fractions and irrational numbers are not excluded from the system but do not currently play a significant role. Future incarnations of MG will extend it outward beyond the unit vector cube to tile the geometric universe and inward to encompass fractional entities and fractals.
  18. It is a hybrid geometry resulting from superposition of 6-dimensional numbers and 3-dimensional numbers and is fully commensurate with
    3-dimensional Cartesian geometry.
  19. It describes a linear mapping of two dimensions to one dimension which forms a field of probable numbers over the field of real numbers, analogous to the field of complex numbers but constructed on a different principle and extending to the real numbers in all three Cartesian dimensions rather than just one. The two independent higher dimensions so mapped become dependent variables in the mandalic “line” that results from the compositing of the two. This is expressed, in a sense, as two sine waves 180 degrees out of phase that mutually intersect a common Cartesian axis (x,y or z) at Cartesian +1 and -1 and are maximally separated at Cartesian 0.
  20. This phase difference produces wave interference of both constructive and destructive varieties. So-called “points” or “particles” they represent come into existence only discretely and intermittently at Cartesian -1, +1, and 0, the locations of intersection or confluence (-1 and +1) and maximum separation, the maxima/minima of the two entangled sine waves that occur at Cartesian 0.
  21. As the unit vector cube corresponds to and describes only half of each of the two sine waves, two unit vector cubes are required for a full cycle. Mandalic geometry as currently formulated with a single unit cube then needs to be extended to at least two of these. Extension in both directions of all three Cartesian axes is easily accomplished by repeatedly inverting the current single unit vector cube.
  22. This means that mandalic coordinates alternate positive and negative on both sides of Cartesian 0. The extensions can be continued to infinity in both directions, but not, properly speaking, positive and negative infinity since the manner of extension has created what is essentially a convention-free coordinate system which consists of repeated units of consecutively inverted unit vector cubes in which positive and negative alternate ad infinitum and every Cartesian even-numbered coordinate becomes a “zero equivalent” , or better, a neo-zero in this extended mandalic coordinate system.
  23. The resulting geometry is a dynamic one with “points”, “lines”, and “planes” coming into and passing out of existence intermittently in a time-sharing of corresponding Cartesian entities. It “persists” in time and space by means of continuous creation, destruction and re-creation and is “held together” by “force fields” produced and maintained by means of tensegrity which is based ultimately on dimension and number, and by a process that.might best be described as a “weaving of reality” with warp and woof.
  24. The 2:1 compositing of dimension involved creates a new number system the members of which are like the real integers in all ways except that they map differently to a Cartesian geometric space. Whereas Decartes assumes that one number maps to one point, MG does not make this assumption which is just an unproved axiom that Descartes makes implicit use of.
  25. The method of dimensional compositing automatically results in a mandalic formation having a geometric progression through three Euclidean/Cartesian dimensions from periphery to center (origin).
  26. Currently MG is limited to a description of unit vectors in a composite hybrid 6D/3D geometry but can be extended to include all scalar values and any even number of dimensions.
  27. The notation system used is borrowed from Taoism and foreign to most Western mathematicians. It is, however, basically equivalent to Cartesian coordinate signs (yin=minus; yang=plus); ordered pairs (=bigrams); and ordered triads (=trigrams); and extends these concepts to include ordered quads (=tetragrams) and ordered sextuplets (=hexagrams).
  28. This notation system is used rather than the usual Cartesian notation because it is much easier for the mind to manipulate dimensional numbers using it. It takes only a little practice to become accustomed to using it. Without its use, understanding of mandalic geometry becomes extremely difficult, if not impossible.
  29. As MG views a point as a concurrence of various different dimensions, it interprets Cartesian ordered pairs and triads, and their extensions to higher dimensions, as tensors and treats them as such. This makes it possible to apply operations of addition and multiplication to these mathematical entities in a manner analogous to the way William Rowan Hamilton applied these operations to complex numbers by way of what he called “algebraic couples”.
  30. The probabilistic mandalic form that is the hallmark of MG conveys and necessitates a new interpretation of zero(0). In MG “zero” is not the empty null that it is in Cartesian geometry and Western mathematics generally, but rather a fount of being, so to speak, and a logic gate spanning dimensions. Wherever a zero occurs in Cartesian coordinates two Cartesian-equivalent forms are found in mandalic coordinates. So in the mandalic cube based on unit vectors the twelve edge centers, having a single Cartesian zero, have two Cartesian-equivalent forms (hexagrams); the six face centers, having two Cartesian zeros, have four Cartesian-equivalent forms; and the single cube center, the Cartesian origin point with three zeros, has eight Cartesian-equivalent forms.
  31. Thisalternative zero and the mandalic structure it inhabits force the creation of four different amplitudes of dimension in the 6-dimensional unit vector cube. These are not independent but all mutually dependent and holo-interactive within the composite 6D/3D coordinate system. All of this occurs in a context reminiscent of the one inhabited by nuclear particles. The mapping proposed by MG may in fact model the elementary force fields, electromagnetism and quantum chromodynamics. It suggests a possible mechanism for formation of the state of matter known as a quark-gluon plasma. Hidden within it may even be the secret of quantum gravity.

© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 312-

Beyond the Enlightenment Rationalists:
From imaginary to probable numbers - VI

image

(continued from here)

“O Oysters, come and walk with us!” The Walrus did beseech. “A pleasant walk, a pleasant talk, Along the briny beach: We cannot do with more than four, To give a hand to each.”

* * *

“The time has come,” the Walrus said, “To talk of many things: Of shoes–and ships–and sealing-wax– Of cabbages–and kings– And why the sea is boiling hot– And whether pigs have wings.”

-Lewis Carroll, The Walrus and the Carpenter

image

In this segment, probable numbers will be shown to grow out of a natural context inherently rather than through geometric second thought as transpired  in the history of Western thought  with imaginary numbers and complex plane.  To continue  with development of probable numbers it will be necessary to leave behind,  for the time being,  all preoccupation with imaginary numbers and complex plane.  It will also be necessary  to depart from our comfort zone of Cartesian spatial coordinate axioms and orientation.

Probable coordinates do not negate validity of Cartesian coordinates but they do relegate them to the status of a special case.  In the probable coordinate system the three-dimensional coordinate system of Descartes maps only one eighth of the totality. This means then, that the Cartesian two-dimensional coordinate plane furnishes just one quarter of the total number of  corresponding probable coordinate mappings  projected to a two-dimensional space.[1]  It suggests also that  Cartesian localization  in 2-space or 3-space is just a small part of the whole story regarding actual spatial and temporal locality and their accompanying physical capacities, say for instance of momentum or mass, but actually encompassing a host of other competencies as well.

Although this might seem strange it is a good thing. Why is it a good thing?  First, because nature, as a self-sustaining reality, cannot favor any one coordinate scheme but must encompass all possible - if it is to realize any.  Second,  because both the Schrödinger equationandFeynman path integral approaches to quantum mechanics say it is so.[2]  Third,  because Hilbert space demands it.  This may leave us disoriented and bewildered, but nature revels in this plan of probable planes. Who are we to argue?

So how do we accomplish this feat? Well, basically by reflections in all dimensions and directions. We extend the Cartesian vectors every way possible.  That would give us  a 3 x 3 grid or lattice  of coordinate systems (the original Cartesian system  and  eight new grid elements surrounding it),  but there are only four different types,  so we require only four of the nine to demonstrate. It is best not to show all nine in any case because to do so  would place our Cartesian system at direct center of this geometric probable universe and that would be misleading. Why? Because when we tile the two-dimensional universe to infinity in all directions,  there is no central coordinate system. Any one of the four could be considered at the center, so none actually is. Overall orientation is nondiscriminative.[3]

image

LOOKING GLASS CARTESIAN COORDINATE QUARTET

The image seen immediately above shows four  Looking House Cartesian coordinate systems, correlated within a mandalic plane. This mandalic plane is  one of six faces of a mandalic cube,  each of which  is constructed to a different plan but composed of similar building blocks, the four bigrams in various positions and orientations. A 2-dimensional geometric universe can be tiled with this image,  recursively repeating it in all directions throughout the two dimensions.[4] It should not be very difficult for the reader to determine which of the four mandalic moieties references our particular conventional Cartesian geometric universe.[5]

image

It remains only to be added here and now that potential dimensions, probable planes,  and  probable numbers  arise  immediately and directly from the remarks above. In some ways it’s a little like valence in chemical reactions.  We’ll likely take a look at that combinatory dynamic in context of mandalic geometry at some time down the road.  Next though we want to see how the addition of composite dimension impacts and modifies the basic geometry of the probable plane discussed here.[6]

(to be continued)

Top image: The four quadrants of the Cartesian plane.  These are numbered in the counterclockwise direction by convention. Architectonically, two number lines are placed together, one going left-right and the other going up-down to provide context for the two-dimensional plane.  This image has been modified from one found here.

Notes

[1] To clarify further:  There are eight possible Cartesian-like orientation variants in mandalic space arranged around a single point at which they are all tangent to one another. If we consider just the planar aspects of mandalic space,  there are  four possible Cartesian-like orientation variants  which are organized about a central shared point in a manner similar to how quadrants are symmetrically arranged  about the Cartesian origin point (0,0) in ordinary 2D space. But here the center point determining symmetries is always one of the points showing greatest rather than least differentiation. That is to say it is formed by Cartesian vertices, ordered pairs having all 1s, no zeros.  That may have confused more than clarified, but it seemed important to say.  We will be expanding on these thoughts in posts to come. Don’t despair. For just now the important takeaway is that the mandalic coordinate system combines two very important elements that optimize it for quantum application:  it manages to be both probabilistic and convention-free  (in terms of spatial orientation,  which surely must relate to quantum states and numbers in some as yet undetermined manner.) At the same time, imaginary numbers and complex plane are neither.

[2] Even if physics doesn’t yet (circa 2016) realize this to be true.

[3] It is an easy enough matter to extrapolate this mentally to encompass the Cartesian three-dimensional coordinate system but somewhat difficult to demonstrate in two dimensions.  So we’ll persevere with a two-dimensional exposition for the time being. It only needs to be clarified here that the three-dimensional realization involves a 3 x 3 x 3 grid but requires just eight cubes to demonstrate because there are only eight different coordinate system types.

[4] I am speaking here in terms of ordinary dimensions but it should be understood that the reality is that the mandalic plane is a composite 4D/2D geometric structure, and the mandalic cube is a composite 6D/3D structure. The image seen here does not fully clarify that because it does not yet take into account composite dimension nor place the bigrams in holistic context within tetragrams and hexagrams.  All that is still to come.  Greater context will make clear how composite dimension works and why it makes eminent good sense for a self-organizing universe to invoke it. Hint: it has to do with quantum interference phenomena and is what makes all process possible.

ADDENDUM (12 APRIL, 2016)
The mandalic plane I am referring to here corresponds to the Cartesian 2-dimensional plane and is based on four extraordinary dimensions that are composited to the ordinary two dimensions, hence hybrid 4D/2D. It should be understood though that any number of extra dimensions could potentially be composited to two or three ordinary dimensions. The probable plane described in this post is not such a mandalic plane as no compositing of dimensions has yet been performed. What is illustrated here is an ordinary 2-dimensional plane that has undergone reflections in x- and y-dimensions of first and second order to form a noncomposited probable plane. The distinction is an important one.

[5] This is perhaps a good place to mention that the six  planar faces  of the mandalic cube fit together seamlessly in 3-space,  all mediated by the common shared central point, in Cartesian terms the origin at ordered triad (0.0.0) where eight hexagrams coexist in mandalic space. Moreover the six planes fit together mutually by means of a nuclear particle-and-force equivalent of the mortise and tenon joint but in six dimensions rather than two or three, and both positive and negative directions for each.

[6] It should also be avowed that tessellation of a geometric universe with a nondiscriminative, convention-free coordinate system need not exclude use of Cartesian coordinates entirely in all contextual usages.  Where useful they can still be applied in combination with mandalic coordinates since the two can be made commensurate,  irrespective of  specific Cartesian coordinate orientation locally operative. Whatever the Cartesian orientation might be it can always be overlaid with our conventional version of the same. More concretely, hexagram Lines can be annotated with an ordinal numerical subscript specifying Cartesian location in terms of our  local convention  should it prove necessary or desirable to do so for whatever reason.

On the other hand,  before prematurely throwing out the baby with the bath water, we might do well to ask ourselves whether these strange juxtapositions of coordinates might not in fact encode the long sought-after hidden variables that could transform quantum mechanics into a complete theory.  In mandalic coordinates of the reflexive nature described, these so-called hidden variables could be hiding in plain sight.  Were that to prove the case,  David Bohm andLouis de Broglie  would be  immediately and hugely vindicated  in advancing their  pilot-wave theory of quantum mechanics.  We could finally consign the Copenhagen Interpretation to the scrapheap where it belongs,  along with both imaginary numbers and the complex plane.

ADDENDUM (24 APRIL, 2016)
Since writing this I’ve learned
that de Broglie disavowed Bohm’s pilot wave theory upon learning of it in 1952. Bohm had derived his interpretation of QM from de Broglie’s original interpretation but de Broglie himself subsequently converted to Niels Bohr’s prevailing Copenhagen interpretation.

© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)


Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address mandalicgeometry.tumblr.com to mandalicgeometry.tumblr.com/page/x, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x (mandalicgeometry.tumblr.com/page/n) where
n = x + 1 - p. :)

-Page 311-

loading